データ・アナリティクス入門

問題を解決するための分析フレームワーク活用術

問題の絞り込み方法は? 問題の箇所を明確にするためには、まず分析対象を絞り、原因を考えやすくします。また根本的な原因の仮説を立てる際には、3C(市場、競合、自社)や4P(製品、価格、場所、プロモーション)のフレームワークを活用します。そして、仮説に基づいてデータを集めます。この過程では、必要なデータが何かを見極めることが重要です。 仮説構築の多様性は重要? 仮説は複数立てるべきで、決め打ちにしないよう注意します。また、異なる切り口で網羅的な仮説を立てることも大切です。データ収集は、自分で取りに行ったり、誰かに聞いたりして行います。また、比較のためのデータも集めます。さらに、反論を排除するためのデータを集めることも重要です。自分に都合の良い情報だけを集めるのではなく、説得力のある分析を目指します。 データ分析のポイントは? データを見る際には、意図を持って分析します。例えば、問題箇所を絞り込み、フレームワークを活用して根本的な原因の仮説を立てます。その際、異なる切り口から多角的に仮説を立てるよう心がけます。そして、データを集めて比較し、反論を排除するための情報まで踏み込んで確認します。この一連のステップを可視化し、習慣化することが重要です。 どのフレームワークが適切? 仮説を立てるためのフレームワークについては、自分の業務に適したものを探し、過去の事例から有効なフレームワークを検証します。反論を排除する情報を集めるためには、周りのメンバーの協力を得て壁打ちを行い、反論点を意識的に探るようにします。

クリティカルシンキング入門

視点ひとつで未来が変わる

新たな発想は? 視点、視座、視野というワークを通じて、アイデアを広げる具体的なステップを学びました。各ステップで軸をずらし、視点を変えることで異なる可能性を引き出すアプローチは、短い時間でも新たな発想の扉を開く手法だと感じました。 批判的思考はどう? また、クリティカルシンキングという批判的思考法について学びました。一人でもテクニックを身につけることで、これまで経験してこなかった視点や発想に気づける点、そして周囲の意見を取り入れる大切さを再認識しました。この知見は、分析レポートの作成やデータの取り扱い、施策検討の場面で活かせると感じています。 レポートは分かる? 特に、分析レポートにおいては、読み手がアナリストだけでなく、企画者や経営層といった幅広い層であることを意識する必要があります。事実だけでなく、結果指標や売上といった視点でまとめるプロセスが、より分かりやすいレポーティングにつながると実感しました。 顧客体験を考える? また、企画者の意図や、提供するサービスがどのように顧客体験を改善するかを検討する際にも、今回学んだ視点の切り替えや多角的なアプローチは大いに役立つと考えています。 情報の真実は? そして、日々新聞や書籍などから情報を得る際には、事実と意見を明確に区別しながら、批判的な視点で読み解くことが重要だと感じています。題材を自分ごとに捉え、ベースとなる軸や書き手の意図を考慮しながら、自分なりの表現にまとめることで、本当に伝えたいことは何かを見極めることができると考えています。

クリティカルシンキング入門

当たり前を疑い、論理で輝く

なぜ初めてで誤解した? クリティカルシンキングに初めて触れたとき、私はこれを「否定的に物事を見る思考法」と誤解していました。しかし、実際に学び、業務で意識して活用する中で、その本質は「物事を多面的に捉え、根拠に基づいて判断する力」であると実感しました。 どの意識が変わった? 今回の学習を通して、まず「当たり前だと思っていたことを疑う」ようになり、自分の考え方が大きく変化したと感じました。また、業務においては提案資料作成の際に、相手の立場に立って考察する意識が芽生えました。一方で、感情と論理を切り離す難しさも痛感し、事実と意見を明確に分けることの重要性を改めて認識する機会となりました。 どの根拠で提案する? 具体的には、提案力の強化に向けて、なぜその商品を提案するのか、どのような根拠があるのかを明確にすることの大切さを学びました。POSデータや市場トレンド、競合状況の分析に基づいた提案が、取引先の課題解決につながると感じています。 どうやって分析すれば? また、売上不振の際には、単純な感覚的判断に頼るのではなく、複数の視点から原因を分析する手法が有効であることを理解しました。こうしたアプローチにより、より具体的かつ説得力のある対策案を提示できるようになりました。 伝えるときの工夫は? さらに、社内での調整や報告においては、感情や主観が混じりがちな場面でも、事実と意見を明確に分けて伝えることが必要であると実感しました。これにより、会議や報告の内容がより論理的で理解しやすくなると感じています。

データ・アナリティクス入門

データ分析で未来を切り拓く!

初期の分析結果は? 物販店の2割削減商品の仮説では、以下のような視点で分析を行いました。まず、データの重心は平均によって決定し、前年同月との販売比較を行いました。また、客単価や平均購入数、近隣店舗との売り上げ比較、顧客のインバウンド需要が変動した理由として、為替レートや可処分所得の変化にも注目しました。これに加え、アンケート施策も取り入れることで、順序立てて考えられるようになりました。 未知領域はどう? 次に、分析がまだ行われていない未知の領域を探るため、仮説を立てる必要があります。KPI以外のデータも分析の対象とすることで、現状を打破することを目指しています。そのために、データ分析手法に行動経済学や神経経済学の視点を取り入れ、心理的なデータ選択を通じて新しいデータ取得方法を確立したいと思います。最終的には、消費者の満足度や不満足度の要因を数値化し、顧客視点を重視した満足度向上に努めたいと思います。また、大量のデータを扱うため、ビッグデータ解析にも挑戦する予定です。 実務活用の振り返りは? 行動計画としては、本研修で学んだデータ分析や問題解決、仮説思考を実務でも活用していきます。これらのスキルは、データ以外の業務にも応用できると確信しています。研修で実施したことと実務での分析結果を2ヵ月間比較し、自分なりにレビューを重ねて、どれだけ浸透したかを振り返ります。また、ストレッチ領域として、ビッグデータに触れ前処理に苦労すると思いますが、実際に手を動かして経験を積んでいくことから始めていきます。

クリティカルシンキング入門

データから見える新事業の可能性探し

データ分析はどう見直す? 得られたデータをそのまま解釈するのではなく、解析の手間を加えることで新たな理解を得ることが可能です。具体的には、割合や相対値を使ってデータを加工したり、数値をグラフや図に変えて視覚的に理解する方法が有効です。また、多くの視点や切り口でデータを分け、特徴的な傾向を探ることが重要です。この際、単に機械的に等間隔で分けるのではなく、その方法が本当に適切かどうかを常に疑う姿勢が求められます。いくつかの切り口で得られた結果を総合的に考慮する際は、誤った結論に至らないよう注意が必要です。 新規事業の見極め方は? 新規事業テーマを探索する過程では、どのテーマを選定すべきか全体像を把握するために、異なる切り口を試してみると良いでしょう。市場規模、成長率、顧客数、深刻度、性別、年齢、居住地などでデータを分けると、それぞれ異なる見方ができるかもしれません。そして、特徴的な傾向に対しては鵜呑みにせず、一度その信ぴょう性を確認する習慣を持つことが大切です。 情報収集は何を重視? 現在は情報収集やヒアリングの段階ですが、まずは分析に必要な情報をしっかり集めることが重要です。その後、複数の切り口でデータを分け、特徴的な傾向が浮かび上がるかを確認します。ヒアリングを行う時も、聞いた内容をそのまま受け取るのではなく、別の視点や視座で見た場合どうなるかを意識して理解を深めたいと考えています。また、課題がどのように存在しているのかを探る際、ヒアリングした内容を整理することで思考を整えたいと思っています。

データ・アナリティクス入門

課題解決スキルが劇的に向上する方法とは?

実践による学びの深まり Week1から継続して学び続けた内容を、ライブ授業の演習を通じて「一気通貫」で実施することができ、実践に活用するイメージが具体化しました。特に、仮説は一度立てたら終わりではなく、段階ごとに検証を通じてブラッシュアップしていくこと、また分析は比較であることを強く感じました。さらに、課題解決のプロセスは「What→Where→Why→How」という順序で考えることが重要であると学びました。このプロセスを進める中で、「データのビジュアル化」や「多様な切り口を考えること」の大切さも再認識しました。 課題解決の新たな視点とは? 自分の仕事は基本的に社内の「課題」を解決することが主な業務であり、この講座で学んだ内容はあらゆる場面で活用できると確信しました。これからは、課題解決のプロセス「What→Where→Why→How」を常に意識したいと思います。問題を解決する際には、直ちにデータ分析に取り掛かるのではなく、まず問題の定義から始め、問題点を特定して原因を分析するというプロセスを「事前」に頭の中で描くことが重要です。それにより、無駄な作業やヌケモレを防ぎ、「How」を忘れずに取り組むことが可能です。 事前準備の重要性について 具体的には、すぐに「データ分析」に取り掛からないことを意識的に行い、事前にそれぞれの課題解決プロセスで必要な「タスク」をイメージし、タイムラインを引いて計画を立てることが大切です。最初はしっかりと言語化し、プランをドキュメントに起こしておくことを心がけます。

クリティカルシンキング入門

データ×想像が生む信頼の伝え方

week5の難しさは? week4までは「自分の伝えたいことを考え抜く」ことの大切さを学びましたが、week5では大量のデータの中から本当に伝えるべき内容を見極める難しさを実感しました。 どう説得力を作る? また、説得力を高めるためには、次の①~③のサイクルを回すことが重要だと感じました。まず①、伝えたい思いを表現する前に、その背景をさまざまに想像します。次に②、その思いがデータによって裏付けられているかを確認し、さらに③、根拠が不足している場合には追加のデータを集めます。こうした手法により、単に閃きに頼るのではなく、しっかりと時間をかけることで、より良い成果が得られると自信が持てました。 サイクルの意義は? ①~③のサイクルをしっかりと回せば、客観的な調査結果や説得力のある行動が浮かび上がり、未知の領域にも効果的にアプローチできると感じています。 大テーマの捉え方は? また、想像するのが難しい大きなテーマに対しても、この手法は効果を発揮します。たとえば、新たなビジネス展開において、どの分野や顧客をターゲットにするか、どのようなアプローチが有効かを見極める場合などです。 計画への活かし方は? ただし、十分な時間をかける必要がある分、定常業務にそのまま適用するのは難しいと考えています。年度方針や中期計画など、じっくり取り組む必要がある場面で活用するのが最適だと思います。現在、今期の計画に取り組むタイミングであり、この学びをしっかりと活かしたいと感じています。

クリティカルシンキング入門

クリティカル思考で切り拓く未来

情報分析はどう進化? 論理的に情報を分析する方法を学び、情報を体系的に整理しながらその信憑性や関連性を評価する力が向上しました。これにより、正確な結論を導く基盤が整い、今後も業務の場面で役立てたいと考えています。 質問で何が深まる? また、適切な質問を行うことで、情報をさらに深掘りする力が養われました。さらに、複雑な問題に直面した際には、クリティカルシンキングを用いて効果的な解決策を見出すことができるようになりました。 日常業務の改善は? 今後の日常業務では、以下の点を意識して知識を活用していきます。まず、プロジェクトの進捗や市場動向を正確に把握するため、情報収集の際には信頼性や関連性を重視してデータを整理し、効果的な意思決定に繋げます。さらに、業務上の問題に対してはクリティカルシンキングで根本原因を特定し、創造的かつ実行可能な解決策を導入していきます。 具体的な取り組みとして、以下の習慣を実践していく予定です。 ・情報収集と分析の習慣化:   ✓ 日常業務で必要な情報を収集する際、信頼性や関連性を意識してデータを整理する   ✓ 分析した情報をもとに、定期的に報告書やプレゼンテーションを作成し、意思決定に役立てる ・フィードバックの活用と自己改善:   ✓ 定期的に上司や同僚からフィードバックを受け、自身の業務の進め方を振り返る   ✓ 改善点を明確にし、具体的な改善計画を立て、次の業務に活かす 以上の学びを活かし、今後の業務改善と効率向上に繋げていきたいと考えています。

クリティカルシンキング入門

なぜを解き明かす成長術

なぜイシューは難しかった? 今週のテーマは「イシューを捉える」でしたが、これまでの学びの中でも特に難しさを感じました。これまでは、解決したいこと=イシューと捉えがちでしたが、今回、まず解決したい目標を前提としてデータを分析し、根本的な問題を洗い出すことが効果的だと学びました。 具体と抽象はどう使う? データを細かく分け、一つ一つ検証する過程で、week1で学んだ具体と抽象の考え方が役立ち、これまでの知識の総合によって初めてイシューを正しく捉えられると実感できました。 なぜ修正時間が増える? 自身の業務では、開発プロジェクトの工数見積もりにおいて、簡単な修正にもかかわらず、なぜ時間がかかってしまうのかという疑問が生じることがよくあります。修正作業や影響確認、テストに要する時間で終わらせがちな現状を踏まえ、それぞれの問題について「なぜ」を追求していく必要性を感じています。 解決策はどう見出す? それぞれの問題に対する具体的な解決策が見つかれば、プロジェクト全体の必要期間が短縮でき、恒久的な改善策が確立されれば、将来的なプロジェクトもこれまでより短い期間で進めることが可能になるでしょう。 論理的思考の進め方は? 今後も、問題に対して論理ツリーのように「なぜ」を分解し、根本課題および効果的な解決策を模索する姿勢を持ち続けたいと思います。今週の総合演習では思考にかなり頭を使い疲労を感じましたが、このプロセスに慣れ、考える場面を増やしていくことが成長に繋がると考えています。

クリティカルシンキング入門

分析をさらに深める視点の大切さ

結論の正当性は? ≪総評≫ 分析をさらに掘り下げることや、さまざまな視点からの分析を行うことで、新たな傾向が見えてきました。結論が出たらそれで終わるのではなく、その結論が本当に正しいのか、さまざまな観点から検証を続けることが真の分析結果につながると感じました。分析の際には、常に他に軸がないかという疑問を持ちたいと思います。また、抜け漏れを防ぐためにMECEを活用していこうと思います。 数値の真意は? ≪数値分析で感じたこと≫ 売り手が持っている情報を基にした分析は、どうしても売り手の視点に偏りがちです。また、年代を18歳まで、22歳までというように、高校生や大学生で区切る視点は、これまで考えたことがありませんでした。 顧客の声は何? 顧客へのアンケートを担当しているので、項目の見直しや分析の深堀りを行い、さまざまな視点から再評価して新たな気付きが得られないか試みてみます。さらに、施策の費用対効果をまとめたデータも管理しているため、こちらもグラフ化して視覚的に捉えられるようにし、他の観点がないか再分析を行いたいと思っています。 次の一手は? 今後の主な取り組みとしては、①アンケートの項目精査と分析、②費用対効果データの見直しの二点となり、今週中に着手したいと考えています。アンケートについては、社内の締切を11月中と設定しているので、適切に実施できる見込みです。費用対効果データの見直しも月次で報告しているため、10月の分析結果をまとめる際に、学んだことを活かしていきます。

データ・アナリティクス入門

ロジックツリーで紡ぐ成長の軌跡

原因特定で悩む? 問題解決のためには、「WHAT」「WHERE」「WHY」「HOW」の4つのステップで整理すると良いと感じました。私は特に「WHERE」の段階、つまり「原因の特定」に偏りがあったように感じますが、今後は「状況把握」や「解決策」に関しても仮説を立て、ロジックツリーを使って可視化するようにしたいと思います。一度有効だと考えた仮説に固執せず、全体を整理し直す柔軟な姿勢を大切にしていきたいです。 人事課題に挑む? 人事課題では、正解がない問題が多く、一般論や他社の傾向と自社の実情が必ずしも一致しない場合があります。そんな中で自分が立てた仮説やその結論を明確にするため、ロジックツリーを作成しながら取り組んでいくことが重要だと感じました。また、これまで属性ごとに人事データを層別分解してきたものの、変数ごとの解釈が不足していたため、状況に応じてさまざまな角度から仮説の検証を行えるように努めたいと思います。 本当の問題は? まずは、目の前のデータに頼るのではなく、何が本当の問題なのかを明確にするための仮説を立て、その仮説をロジックツリーのような形で整理していきます。現状のデータだけでなく、どんなデータがあればより適切な比較ができるかを考え、必要であればデータを収集できる体制を整えることにも注力していきたいです。 検証の進め方は? 最後に、実際にデータを使って仮説を検証する際には、ログを残すことや、時間や状況の違いを比較することを意識しながら、着実に分析を進めていく所存です。

データ・アナリティクス入門

実践×代表値:新たな視野をひらく

代表値の種類は何? 分析や比較を容易にするためのデータ加工の方法について学びました。まず、代表値として単純平均、加重平均、幾何平均、中央値の4種類があること、また散らばりを表す指標として標準偏差(分布も含む)があることを理解しました。これまでの業務では単純平均と中央値を主に使用していたため、各数字に重みを付ける加重平均や、全データを掛け合わせる幾何平均を知ったことで、数値の見せ方に新たな視点を持つことができ、とても興味深く感じました。さらに、ローデータからグラフ化する際に、各代表値ごとの違いを意識することで、より適切なグラフやビジュアル表現が可能になると感じました。 業務評価の新手法は? 直近の業務では社内アンケートを実施する予定があり、満足度などの評価数値に対して、従来の単純平均や中央値に加え、主要ターゲット層の受講率を掛け合わせた加重平均も算出してみたいと考えています。これにより、より実態に即した評価ができると期待しています。 エクセル関数はどう組む? 一方で、各代表値の意味は理解したものの、エクセル上で関数をどのように組むかについてはまだ確認が十分ではありません。特に、幾何平均で平方根が出てくる点については苦手意識がありますので、ミスなく計算できるように仕組み化できないか振り返りたいと思います。また、2SDルールについては基本的な理解はあるものの、具体的にどのように活用すべきかというイメージが定まっていないため、いくつか事例を確認して今後の活用方法を模索していく予定です。

「本 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right