データ・アナリティクス入門

業務に役立つ分析スキルを身につける方法

予測を立てる重要性は? グラフなどの資料を見る際、自分なりの予測を立て、仮説を立てて実態との違いを確認することは重要です。このプロセスでは、仮説の誤りをマイナスに捉えず、新たな課題や問題に気づく機会として扱うことが求められます。 分析のサイクルをどう回す? 分析の基本である「目的・仮説・データ収集・仮説検証」のサイクルを回すことについては、業務で分析を行う際に疎かになっていたと反省しました。数字に集約した分析を学ぶなかで、代表値(単純平均、加重平均、幾何平均、中央値)や散らばり(標準偏差)のそれぞれが適した状況で使い分けることが重要であると再認識しました。 患者数低下の原因とは? 紹介患者数の低下対策を立案する際、まず分析のプロセスをしっかりと踏むことが大切です。特に目的を明確にすることで、求めたい結果を得るためのポイントとなります。次に、どの視点で分析を進めるかを判断し、グラフや数字を用いて実行していきます。 具体的には、紹介患者数低下の分析では、近隣医療機関からの紹介の減少が課題(目的・問い)となります。減少の要因について仮説を立て、その後、取るべき分析の視点(インパクト・ギャップ・トレンド等)を考慮してデータを収集し、グラフ化・数値化します。最後に、分析結果と仮説を検証し、対策を立案します。

アカウンティング入門

半間比が明かす企業戦略の秘密

半間比の効果は? 今週の学習では、PL(損益計算書)の半間比の見方を通して、各店舗や企業がどのように価値を創造しているかを理解できた点が非常に印象的でした。具体的には、ある業態では高コストながら高単価を狙い、また別の業態では気軽さを武器に購買数を増やすという違いがあり、半間比を比較することで経営方針の違いが明確になりました。数字の背後にある戦略を読み取る視点を身につけられたことが、今回の大きな収穫です。 決算書の読み方は? この学びを自分の仕事に活かすためには、まず自社の決算書やPLを正確に読み解く力を養うことが重要だと感じました。さらに、競合他社の決算書や業績資料と比較することで、自社の強みや改善点がより明確になると考えます。また、新聞や経済誌に掲載されている企業の業績記事に接する際も、PLや半間比の視点を持つことで内容の理解が深まり、現実のビジネスへの洞察が広がると実感しました。 行動に移すには? 実際の行動に移すため、まずは日常的に新聞などの経済情報に触れ、気になる企業や話題に上がる企業について、試算表やPLなどの財務情報を毎週調べるようにしていきたいと思います。こうした継続的な情報収集と分析の習慣を通して、財務の見方や経営判断に必要な視点を少しずつ身につけていけると期待しています。

データ・アナリティクス入門

振り返りで見つける未来への一歩

学びの方向性は? 学んだことを振り返る中で、今後の方向性を整理できたことが大きな学びとなりました。データ分析に留まらず、組織の問題解決に向けた示唆を提供し、行動結果をデータで検証するPDCAサイクルの推進に貢献する狙いがあります。 分析スキル向上は? そのため、まずはデータ分析スキルを実用レベルに引き上げ、第三者から分析を依頼される水準を目指します。これが、データ収集や提案のための足掛かりとなります。 予測と検証は? さらに、現在仕掛り中のデータ予測の考え方を完成させ、組織内で実践して効果検証を行う予定です。問題解決のステップを実践することで、理解をさらに深める狙いもあります。 プロセス整理は? また、現状の取り組みを踏まえて、問題解決のプロセスを説明資料に落とし込み、ステップごとの流れを整理することが計画されています。これにより、理論と実践の両面での理解が進むと考えています。 実施計画はどう? 具体的なスケジュールとしては、まず9月頃までに過去データを用いた効果検証を行い、データ予測の手法を固めます。その後、検証結果をもとに承認を得た上で、10月以降に実施に移ります。実施前には、どのように効果検証を行い、どの基準で判断するかの基準を明確にしておく予定です。

クリティカルシンキング入門

ナノ単科で見つけた未来のヒント

アイキャッチは有効? 【目を引くキャッチフレーズで印象づける】 資料作成や情報伝達において、まずは冒頭に目を引くアイキャッチを配置することが重要です。これにより、読む人の興味を引き、伝えたいポイントが一目で理解できる構成になります。 視覚表現は伝わる? グラフや図、文字の色、フォントといった視覚要素は、要点をパッと伝えるための有用なツールです。資料全体の構成や内容を整理し、何が一番伝えたいのかを明確に示すことで、相手に情報を探させない資料作成を実現できます。 グラフの使い方は? アンケート収集や実績報告、データを基にした考察の場面では、グラフを用途に合った形で活用することが求められます。色使いは控えめにしつつ、強調すべきポイントが際立つように工夫することが大切です。 文章の見直しは? また、資料や文章は提出前に客観的に見直し、伝えたい内容が確実に伝わるかどうかを確認することが必要です。読み手の視線がどの順序で情報を捉えるかを考慮し、論理的な構造と流れを意識した文章作成を心がけましょう。 強調方法は効果的? このように、シンプルで分かりやすい表現と、効果的な視覚的強調を組み合わせることで、資料の要点がすぐに把握できるコミュニケーションが実現します。

データ・アナリティクス入門

数字の背後に輝く発見

統計でどう比較する? 分析は、単なる数値の羅列からその違いを見出すだけではなく、統計的な手法を用いて比較することが大切です。たとえば、平均は代表的な統計手法ですが、平均値だけではデータの全体像を正確に把握できない場合があります。そこで、最大値、最小値、中央値、最頻値などの複数の指標を合わせて用いることで、より明確な違いが見えてきます。また、数値だけでは分かりにくい部分はグラフなどのビジュアルツールを活用することで、視覚的に比較しやすくなります。 仮説は信頼できる? 現状のデータ分析では、まず仮説を立て、その仮説に基づいた統計的手法やグラフを用いて分かりやすい資料作成に努めています。しかし、仮説が常に正しいとは限らないため、偏ることなく中立的な立場でデータを検証し、仮説に反する結果があれば素直に認めて正確に分析することが求められます。 方法はどう変える? また、現行の分析手法や視点を根本から見直すことで、データの収集方法や指標の選定、解釈の仕方まで再検討し、実態に即した新たな気づきを得ることが重要です。その上で、得られた新たな視点をもとに具体的な改善策や施策を立案し、現場での運用につなげることで、分析結果を実効的に活用するサイクルを確立していきたいと考えています。

データ・アナリティクス入門

問題解決の基本を再確認:MECEとロジックツリーの活用法

問題解決の基礎を学ぶ 今週は、問題解決の4ステップ(What→Where→Why→How)のうち、What(問題の明確化)について学びました。目的を見失わないために、あるべき姿と現状のギャップを数値や定量的に示すことが重要です。そのため、MECEを使い、漏れなく重複なく分解して考えると良いということを再認識しました。 分解の難しさをどう克服する? 過去にロジックツリーを学んだことがありますが、MECEを意識しながら何で分解すべきかを羅列するのは難しいと感じています。多くの場合、目の前の情報や限られた知識だけで分解した気になってしまうことが多いです。この課題を解決するために、最近は生成AIを活用し、プロトコルやフレームワークを使って客観的な情報を得る機会が増えています。これにより、自分でロジックツリーを使って分析しつつ、他者やAIから得られる情報を組み合わせて問題を明確化していきたいと考えています。 学びを日常でどう活かす? 毎月の会議資料や日常の部門の問題解決手段を検討する際に、この学びを活用します。ステップを踏んで考え、MECEを意識しながら、広く情報収集し、ロジックツリーを使って情報を分解することで、まずは問題を明確にすることから始めたいです。

データ・アナリティクス入門

多角的視点で得た新たな発見

フレームワーク活用のコツは? 課題を考える際、初めから新たに考えるのではなく、まず適切なフレームワークに当てはめることで、情報の漏れなく抜け漏れを防ぎ、新たな観点を追加することが可能です。フレームワークを活用することで、論点の整理がしやすくなります。 仮説はどんな視点で? 仮説を立てるときは、単一の固定観念にとらわれず、複数の仮説をさまざまな切り口から整理することが求められます。こうした多角的な視点から検討することで、仮説の網羅性が向上し、より効果的な対策が検討可能となります。 情報収集の手順は? データ収集のプロセスでは、誰にどのように情報を求めるかが非常に重要です。単に各種資料に頼るのではなく、実際に知識を有する人を特定し、確認の方法を明確にすることで、比較や反論の排除にも努めるとよいでしょう。 施策実践の始め方は? 施策を検討する際は、目的に適したフレームワークを調べること(例としてChatGPTへの問い合わせ)から始め、複数の角度で仮説を定義する必要があります。また、データ収集においては、各種資料の作成者を特定し、作成の意図や補足情報、意見などアドバイスを求めながら取り組むことで、より充実した施策の策定が期待できます。

クリティカルシンキング入門

伝わる!シンプル資料の作り方

伝えたいことって何? キーメッセージを明確にし、伝えたい内容に沿って情報の順序やグラフの種類を選ぶことが重要であると学びました。相手に意図を的確に伝えるためには、単に言葉を練り直すだけでなく、どの情報をどのように表示すれば理解しやすいかを考える必要があると感じています。 新規販促ってどうかな? 今後は、新規顧客拡大に向けた販促手法の整理に取り組みます。上長のみならず、関連部門の担当者と共有する資料作成や、WEBページ改修、さらにはデザインやコーディングを依頼する際にも、明確な方向性を示す手段として活用していくつもりです。 視覚資料の威力は? また、メッセージを迅速かつ正確に伝えるために、図やアイコン、写真、表やグラフなど、視覚的に情報が把握しやすい資料を作成することが求められます。伝えたい内容を最もシンプルに表現するためには、どのデータが必要か、そしてそのデータをどのように表現すればよいかを、販促手法ごとに検討してリスト化することが大切です。 データ整理の真意は? さらに、必要なデータを収集する際には、それぞれのデータがなぜ必要であるのかを明確にしながら、情報の収集と整理を進めることが不可欠だと実感しています。

クリティカルシンキング入門

偏りを超えた新しい気づき

なぜ偏った視点に気づく? 物事を考える際、人間はつねに偏った見方をしてしまうという現実を意識しています。その偏りこそが「ほかには何があるのだろうか」と自分に問いかけるきっかけとなり、課題に取り組む前にまず問いを立て、その答えを導き出すプロセスが大切だと学びました。また、相手に伝えるときは正しい日本語を使い、伝える手順を踏んで具体的な理由を添えることが必要だということも理解しています。 どう伝えると分かりやすい? 顧客との会議や提案の場面では、まず問いを明確にし、事前に参加者と共有することが重要と感じています。その結果、伝わりやすい資料作りや話し方を工夫することで、常に重要なポイントに焦点をあてたブレのない進め方が可能になると考えています。 何を合わせるべきか? さらに、自分の常識は会議参加者の常識と必ずしも一致しないことを認識し、まずは前提条件を合わせる姿勢が求められます。その上で、議題となる問いを全員で共有し、話が脱線しそうな場合には常に問いに立ち返って軌道修正を図ります。そして、情報を収集しデータを分解することで、相手に伝わりやすい形の資料を作成する努力を続けています。

クリティカルシンキング入門

データで見えた「新たな発見」の重要性

視覚的資料の効果的な使い方とは? 図や表などの視覚的資料を用いることで、内容の理解が促進されることを実感しました。データを分ける際には、最初に大きく分類し、後で細かく分けることで、必要に応じて簡単に異なる切り口に変えられることを学びました。切り口を考える際、自分なりの解釈を持たずに分けることが重要だと感じました。 正確な業務報告のために何を意識する? 業務結果を報告する際、実際の数字やグラフを交えた説明は理解されやすいと感じました。一方で、結論を先に決めてからデータを用意する場合、違うデータが出たときに戸惑うことが多かったです。偏見なくデータを見ることで、新しい結論や発想に至る可能性が広がると感じました。 偏見を排除してデータを分析するには? 偏見なくデータを収集し、そこから得た結論を説明する際、もれなくダブりなく分析することで、より詳細な結論や議論の種となる事項を挙げられるようにしたいです。また、自分や他者が提出したデータを見る際には、もれなくダブりなくなっているか、恣意的なデータになっていないかを意識したいと思います。

クリティカルシンキング入門

グラフの選び方で差がつく資料作り

グラフの選び方は? スライド作成に限らず、メールや文章作成時にも役立つポイントが多く含まれていました。特にグラフ作成においては、何を表現したいのかを明確にし、その目的に適したグラフを使用することが大切です。なんとなくでグラフを選ばず、読み手が一目で何を言いたいかが伝わるように意識します。 他者の視点を採る? 現在、市場分析でBIツールを使いながらグラフを作成しています。その際、どのグラフが最適かを考慮して選択しています。作成したグラフをスライドにするときには、シンプルなタイトルと内容を心がけ、全体がすぐに理解できるようにしています。しかし、作成者本人ではなかなか読み手の視点に立てないため、第三者にもスライドを確認してもらい、意見を収集しようと考えています。 どう伝えるのが良い? 伝えたい内容とその目的を整理し、漠然とした選択でグラフを使わないことが肝心です。読み手に過度な解釈を強いるスライドや資料、文章にはしないように心がけます。第三者にフィードバックを求め、修正を加えながら、伝えたいことが正確に伝わる内容に仕上げます。

データ・アナリティクス入門

仮説×分析で広がる学び

最初の目的は何? 分析に対して明確な目的意識を持ち、初めから仮説を立てるというプロセスは非常に実践的で役立ちました。最初に結論の方針を定め、その上でデータ収集を進める手法は、後の分析をスムーズに導いてくれると実感しています。 データ分解の意味は? また、データを分解し、得られた情報をさらに細かく吟味してストーリー性を持たせる工夫も印象的です。仮説の過程や構成要素を記録しておくことで、最終的な結論と照らし合わせながら再確認するプロセスも納得できるものがありました。 なぜ比較が必要? 加えて、複数の対象者から得られる情報において数を揃えて比較をするという点は、分析結果を信頼性の高いものにするための大切なポイントだと感じました。これにより、結論を支える根拠が一層明確になり、聞き手が納得しやすい資料作りが可能になっています。 学びの意義は何? 全体として、仮説に基づいたデータ収集と詳細な検証、そして論理的なストーリーの構成という一連の手法は、現実の業務においても非常に活用できる貴重な学びとなりました。
AIコーチング導線バナー

「資料 × 収集」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right