データ・アナリティクス入門

数値に潜む、ばらつきの真実

平均とばらつきの真実は? 代表値とばらつきをデータ活用する際に考慮すべきポイントについて、理解が深まりました。データを読み解く際、まず平均値に頼りがちですが、大量のデータの場合、単純平均ではばらつきの影響が大きくなる可能性があるため、中央値や加重平均、標準偏差の重要性を再認識できました。また、目的に沿ったグラフの選び方についても、これまで十分に把握できていなかったため、ケースに応じた適切なグラフ選択の大切さを学びました。 地域差はどう捉える? 売上分析においては、前年比を合わせたり、特定企業の店舗別売上を確認して地域差を検討するなど、さまざまな視点でデータを活用できると感じました。特に地域差に関しては、ばらつきが出やすい要素であるため、標準偏差や代表値、ばらつきを意識しながらデータ作成や分析を進めていくことが重要だと思いました。

データ・アナリティクス入門

仮説で広がる学びの未来

仮説思考はなぜ重要? データ分析において仮説思考が重要であると実感しました。しかし、まだ完全に身についていないため、今後の業務の中で積極的に意識し、訓練していく必要があると感じています。理解したつもりでも、実際に言葉にして表現する際には苦労することもありました。 経験則から何が変わる? 今回の学びを生かし、所属する部門で担当している市場動向や契約に関するデータの収集と分析に、従来の経験則に基づく判断から仮説思考に基づいた立案へとシフトしていきたいと考えています。 言語化はどうする? さらに、言語化の訓練を重ねることで、仕事はもちろん日常生活においても仮説思考プロセスを意識して課題に取り組む習慣を身につけたいと思います。そして、適切な結論を導き出すために、さまざまなフレームワークや手法の活用を習慣化していく所存です。

データ・アナリティクス入門

平均の壁を超える新たな挑戦

分析プロセスとは? 「分析のプロセス」について、まず目的を明確にし、仮説を立て、次にデータを収集し、最後にその仮説を検証するという一連の流れが紹介されました。代表値として、単純平均、加重平均、幾何平均、中央値が挙げられており、各手法を用いることでデータの中心をどこに置くかを判断します。一方、標準偏差を用いた散らばりの分析は、データがどのように分布しているかを把握する上で不可欠だと理解しました。 手法選びはどう? 実務では、これまで単純平均を頻繁に使用していましたが、その結果としてデータのばらつきを捉えられず、正確な分析が難しいと感じていました。今回の学びを通じて、加重平均や中央値など、状況に応じた手法の選択と活用が重要であることに気づきました。今後は、各手法の特性を考慮しながらデータ分析に取り組んでいく所存です。

データ・アナリティクス入門

標準偏差で見えるデータの魔法

標準偏差ってどう理解? バラツキを示す標準偏差について、普段利用する機会が少ないためか、初めて触れる際にはとっつきにくい印象を持ちました。学校での成績に用いられる偏差値とは異なるものなので、具体的な事例に基づいて何度も実際に使ってみることが重要だと感じます。 代表値とバラツキの違いは? 一方、単純平均、加重平均、中央値といった代表値は、日常的に利用しているため理解に苦労することはありません。しかし、バラツキに関してはこれまであまり注目してこなかったため、データの特徴把握のためにも積極的にビジュアル化し、標準偏差を意識して利用したいと思います。 どう実践に活かす? 今回学んだ内容を実践に取り入れる際、代表値だけでなく、標準偏差がどのような場面で効果的に使えるのかを具体的に考えながら業務に活かしていきたいです。

データ・アナリティクス入門

比較で見える回収改善のカラクリ

分析の基本は? 債権回収の分析にあたっては、「分析は比較である」「apple to apple」「生存者バイアスに気をつける」の三つのキーワードを常に意識しています。まずは、分析の目的を明確にし、全体像をビッグデータで可視化するところから始めます。 現状評価はどう? 具体的には、保有している債権全体と請求可能債権の集計を行い、過去からの変遷を比較することで現状の回収状態を評価します。その上で、改善が求められる債権セグメントを明らかにしていく方針です。 集計イメージは? まずは集計のイメージを作成します。保有債権を請求可能なものとそうでないものに分類し、細分化した内容を表にまとめます。イメージが固まったらビッグデータを活用して集計を実施し、過去からの遷移表を作成して比較しやすい状態に整えます。

データ・アナリティクス入門

数値と成長が紡ぐ学びの物語

代表値の使い分けは? 今回は、実際に数字に集約して捉えるという観点から、代表値と標準偏差について学びました。代表値には、単純平均、加重平均、幾何平均、中央値が存在し、それぞれの違いを意識しながら適切に使用することの大切さを再確認できました。 数値の視覚化は? 業務上は、主に標準偏差をグラフ上で確認する形で活用しています。ただし、数値として厳密に扱っているわけではなく、視覚的なデータとして捉えています。また、幾何平均については、Excel関数を利用して計算することが多いです。 成長率評価はどう? 一方で、個人の成長率を評価する際に、回答年や回答抜け年、最初と最終の回答年がバラバラなため、アナログな方法で関数を適用している現状があります。より効果的な方法があれば、ぜひ知りたいと思っています。

アカウンティング入門

財務三表で探る価値の道筋

財務三表の重要性は? アカウンティングは会社経営における重要な意思決定の基盤であり、特に財務三表は基本中の基本だと実感しました。また、事業は本質的にお客様へ価値提供を行うものであり、数値の背後にある価値を見極めることが大切です。 財務諸表の現状は? 今週中に自社の損益計算書、貸借対照表、キャッシュフロー計算書がどのような状況にあるかを詳細に読み解き、私なりの分析を試みたいと思います。同業他社や、メディアで取り上げられる企業のデータも参考にしながら、さらに幅広い視点で考察を深める予定です。 仲間の意見はどう? また、これまで自分があまり関心を持たなかった業界の財務三表に触れることで、他の受講生からの分析意見も取り入れ、自分にはなかった新たな視点や気づきを得られることを期待しています。

データ・アナリティクス入門

データに隠れた学びの宝石

代表値の役割は? 今回の学習では、数字と数式における代表値とばらつきの概念を学びました。代表値では、平均値、加重平均値、幾何平均値、中央値、最頻値という各種の指標の使い分けを学ぶとともに、平均値の弱点についても理解を深めました。 ばらつきの意味は? また、ばらつきを示す指標として、分散と標準偏差があることを学びました。これらの指標を使うことで、単に中心傾向を示すだけでなく、データ全体の分布やばらつきの様子を具体的に把握できるようになりました。 実践でどう活用? 今後は、日常的なデータ分析において、平均値だけでなく、加重平均値や中央値などの代表値を適切に使い分け、さらに必要に応じて分散や標準偏差も活用することで、より豊かな情報の抽出を目指していきたいと思います。

データ・アナリティクス入門

平均の罠と中央値のひみつ

代表値はどう決める? 過去に単純平均や中央値を扱った経験はありますが、その意味合いまで十分に考慮していなかったと感じています。データの集団同士を比較する際、代表値として何が適切かを選ぶ必要があることを改めて認識しました。特に、年収などのデータでは極端な値が存在する場合、平均値がその値に引っ張られるリスクがあるため、グラフなどで可視化することが重要だと考えます。 KPI評価はどうする? また、営業活動のKPIを組織や個人単位で評価する場合、単純平均ではなく中央値で比較する方法を検討しています。これは、ごく一部の外れ値や大型案件の影響を排除するためです。さらに、年度末までの目標達成に必要な成長率については、幾何平均を用いて算出できそうだという印象を持ちました。

データ・アナリティクス入門

データで魅せる学びの未来

平均と偏差をどう見る? データ解析では、代表値として平均値や分布の指標である標準偏差を用い、データの傾向や特性を把握します。また、平均値以外の代表値も存在するため、目的に合わせた適切な指標の選択が求められます。 グラフ選びはどうなってる? さらに、データを可視化する際は、対象となるデータに合わせた最適なグラフを選ぶことで、情報がより分かりやすく整理されます。この基本的な解析手法は、事業性評価にも応用され、普段の業務に自然と役立てることができています。 動画グラフは新しい? また、関連動画で紹介されていたグラフの中には、以前は使用したことがなかったものもありました。そのため、必要な際にすぐにグラフが作成できるよう、日頃から練習を重ねています。

クリティカルシンキング入門

伝え方改革:魅せる情報術

情報伝達の工夫は? 学んだことは、情報を伝える際の工夫がいかに重要かを実感させる内容でした。まず、グラフなどを活用し、適切な単位やタイトル、図表の選択によって、データの見せ方が大きく伝わりやすさに影響することを学びました。また、フォント、色彩、アイコンといった要素の一貫性と整合性が、メッセージ全体の説得力を左右する点も印象に残りました。 聞き手に寄り添う方法は? さらに、聞き手の認識や関心に合わせた説明の順序や表現方法を工夫することで、情報がより効果的に伝わることに気づきました。今後は、日常のさまざまな場面で、相手の立場や心理状態を意識したメッセージ設計を実践し、自分の伝えたいことがわかりやすく正確に伝わるよう工夫していきたいと考えています。

データ・アナリティクス入門

あなたも変われる学びの瞬間

データをどう活かす? 分析を行う際は、常に目的を意識しながらデータと向き合うことが基本です。データは単なる数字ではなく、素材と捉え、適切な調理方法や飾り付けで仕上げるように結果の表現手法を工夫する必要があります。各データの特性に合わせた分析プロセスを経ることで、他社にもわかりやすく咀嚼・理解される結果を得ることができます。 サポート状況はどう? また、作成されたサポートケース数の増減やカスタマーサーベイの結果を、製品、顧客、担当エンジニアなど複数の要素を組み合わせながら分析します。こうした取り組みによって、サポートチームが健全にオペレーションできているかを確認し、もし課題が見つかった場合には、その解決に向けた具体的なプランの策定も行います。

「表 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right