データ・アナリティクス入門

仮説が照らす新たな一歩

結論と解決をどう見極める? 仮説には、論点に対する一時的な答えとしての「結論の仮説」と、具体的な問題解決を推進する「問題解決の仮説」があるという考え方があります。複数の切り口から仮説を立て、そこから焦点を絞っていくことで、決め打ちせず柔軟に検証を進めることができます。 仮説と検証はどう活かす? このアプローチにより、検証マインドや説得力、問題意識が自然と向上し、分析のスピードおよび行動の精度が高まると感じています。たとえば、営業活動の最適化を図る際には、既存のデータから読み取れる情報に加え、どのようなデータがあれば反論を排除できるかを考慮した仮説を設定し、必要なデータを収集することが重要です。 BI導入で何を学ぶ? また、BIツールを活用した経営ダッシュボードを作成する際は、単に事実を表示するだけでなく、社員が仮説を立て行動につなげられるよう設計する工夫が求められます。納得してもらえる仮説の立て方を学ぶことが、効果的な分析や営業活動の最適化に直結すると実感しています。

データ・アナリティクス入門

平均に隠されたデータの真実

代表値の意味は? データを理解する際、代表値の考え方が基本であると学びました。代表値には単純平均、加重平均、幾何平均、中央値などがあり、たとえ二つの集団で平均値が同じでも、ばらつきの度合いによって集団の実態は大きく異なることがわかります。ばらつきは標準偏差という指標で表され、また、グラフを用いてデータを視覚化することで、説得力が増すことも学びました。 報告書のポイントは? 報告書にデータやグラフを用いる際には、より意味のある情報を見出すことが重要です。平均値だけでは集団の性質を十分に理解できないため、ばらつきなど他の要素も加味し、「本当にそう言えるのか?」と多角的に考える必要があると感じました。 分析目的は何? そのため、まず何のための分析なのか、その目的を明確にすることが大切です。次に、必要なデータを特定し、信頼できる情報源から取得すること。そして、代表値や標準偏差をどう活用すれば集団の性質が理解できるのかを考慮しながら、データを適切に扱いたいと思います。

データ・アナリティクス入門

代表値だけじゃない分析の魅力

代表値は何が最適? 代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、データの内容に応じて使い分けることが求められます。たった一種類の代表値だけを見てしまうと、判断を誤る可能性があるため、標準偏差も含め、データがどれだけ散らばっているか、もしくはまとまっているかといった視点も重要です。 データはどう分析? これまで契約データの分析では、各代表値をそれぞれの視点から確認し、常に多角的なアプローチをとってきました。これにより、一方に偏ることなく、データ全体の特徴をしっかりと把握することができました。CAGRを用いていた部分も、実は幾何平均の単年度バージョンとして捉えることができると考えています。 今後の判断はどう? 今後も、ただ一つの代表値に依存するのではなく、複数の指標を参照しながら、データ群にどのような特徴があるのかを判断したいと思います。そして、分析の目的に立ち返り、適切な分析手法やグラフの選択を通して、より正確な業務遂行を目指します。

データ・アナリティクス入門

比較で見つける日常データの宝石

データの隠れた意味は? 「分析は比較なり」という講師の言葉に、これまでの自分のデータに対する見方を改める衝撃を受けました。単に手元にあるデータだけでは、平均値や統計情報といった基準を算出することができず、その中に秘められた情報を読み解く重要性を再認識する機会となりました。 数字以外も活かせる? また、データ分析と言えば数字を思い描くことが多いですが、文字列などで表現される資料もまたデータであると教わりました。間接部門で働く中で、これまでデータに対して多少なりとも距離を感じていた私にとって、まずは日常の中で身近に存在するデータを取りこぼさず活用することの必要性を実感しました。 管理と復習は十分? 具体的には、毎日、毎週、毎月の使用単位で見落としがないかデータをチェックすること、一元的な保管場所を確保してデータの集計状況を整えることが挙げられます。迷ったときは今回の学びを振り返り、復習を繰り返すことで「データとは何か」を体で覚えていくことが大切だと感じました。

データ・アナリティクス入門

小さな一歩から見える大きな未来

目的と対象は? データ分析を行う際は、まず対象を明確にし、何を比較するのか、どのような目的で分析を進めるのかをはっきりさせることが大切です。やみくもに作業を進めるのではなく、解決すべき問題を洗い出し、最終的にどのようなアウトプットを目指すのかを事前にイメージしておく必要があります。 計画の進め方は? 初めは大まかな分析から始め、そこから徐々に細部にわたる分析へと進めていくと、全体像を捉えながらも、必要な部分に着眼できるため効果的です。データの収集や加工の前に、分析のロードマップを描いて進めると、全体の流れが整理され、分析結果の精度向上につながります。 他部署での連携は? 他部署と共同でデータ分析を実施する場合は、問題点やアウトプットのイメージについて十分なコミュニケーションを取り、上流工程での認識合わせを中心に進めることが重要です。また、学んだ各種のフレームワークやグラフの表現方法を意識的に活用することで、知識の定着や成果の説得力を高める努力をしています。

データ・アナリティクス入門

データ分析の新たな視点を学んで気づいたこと

新たに学んだ加重平均とは? 加重平均を新たに学びました。外れ値がある場合に平均値で表せないことは感覚的には理解していましたが、加重平均を用いて計算したことはありませんでした。また、成長率についても単純に年数分の成長を年数で割るものではないと知っていましたが、直感的にすぐに計算できる方法を知りませんでした。このため、幾何平均も新たに学びました。 学んだ方法の活用を考える 現在の業務では、前年比を用いており、今回学んだ方法を使用する場面はほとんどないと考えています(会社的に求められていない)。しかし、個人的な興味や研究として、各種費用の値上げ率を幾何平均で算出し、物価上昇率との相関を見てみたいと思います。 個人的な興味とデータ分析 会社としてのアウトプットは求められていませんが、個人的な興味として、学んだ手法を各種データに当てはめて試してみるつもりです。これにより、これらのデータ分析が本当に不要なのか、それとも必要なのに見落としているのかを検証してみたいと思います。

クリティカルシンキング入門

仮説を立てて未来を見通す力

なぜ図やグラフを活用する? 数値だけで判断するのではなく、図やグラフを用いて分析することで、全体を把握しやすくなることを再確認しました。個々の切り口で分析を行っても、複合的なアプローチをすることで新たな要因が見えてくる可能性があり、その難しさも実感しました。 仮説検証の重要性とは? ITを利用・提供・提案する企業として、BIツールを使って定型的なグラフでドリルダウンし、詳細に分析することはよくあります。しかし、今回の学習を通じて、定型的な分析にとどまらず、様々な視点で仮説を立てて検証することで、表面には見えない部分を捉える重要性を考えるきっかけになりました。 本質を追求するためには? 今後も、分析ツールを用いた提案は続くと思われますが、単に目に見える形にするだけでなく、本質的な原因を追求するために、自分自身や顧客が仮説を検証しやすい環境やツールの整備が求められると感じています。そのためには、MECEなどを意識してデータを整理整頓することが重要だと考えています。

データ・アナリティクス入門

自分の視点で挑む数字の世界

数字の裏を見る? 数字をただ眺めるだけでなく、何を調べたいのか、どの点が重要かを事前に考える習慣が身についたと感じています。事前にどのようなデータが必要か、どんな情報がありそうかを予測し、仮説を立てることの大切さを、実際の分析を通じて実感できました。 売上の謎は? また、売上の上昇や下降といった大枠だけを把握した後、次のステップとして自ら仮説を立て、複数のデータを組み合わせて検証する練習にも取り組んでいます。データ分析専門のチームが示す資料をそのまま受け入れるのではなく、自己の視点でデータを比較検討することに注力しています。 実践の手順は? 具体的には、以下の手順で実践しています: ① 週明けに発表される週次予約情報や売上実績を前週と比較し、自分なりの考察を深める。 ② 得たデータを企画書に盛り込み、提出する。 ③ これらの実践にあたり、必要なデータの提供をデータ分析チームに依頼してみる。 これらの取り組みを通じ、分析力の向上を実感できています。

データ・アナリティクス入門

数字が語る学びの秘話

代表値の使い方は? 代表値の計算方法として、単純平均、加重平均、幾何平均、中央値のアプローチがあることを再確認しました。日常の業務では状況に応じて使い分けているものの、特に幾何平均は実際に計算する経験がなく、大変勉強になりました。また、データのばらつきを捉えるための標準偏差を使った比較も初めて試み、今後の分析に役立てたいと感じました。 分析結果はどう活かす? 研修成績やサーベイ結果の推移やばらつきを把握し、傾向や特徴を見出すために、今回学んだ代表値の計算方法やビジュアライゼーションが非常に有効だと考えます。まずは、データを確認する前に、点数が上昇している場合と下降している場合の仮説を立て、その上で属性ごとに単純平均を用いて比較を行います。さらに、人事制度などとの関連付けを行う際には、特定の部署の比重を増やす加重平均や、前々回分のデータを反映した幾何平均を導入することで、目的に合った多角的なアプローチを実現し、仮説の検証や次の分析ステップへとつなげていきます。

データ・アナリティクス入門

データと仮説で切り拓く未来

原因は何でしょう? 問題を解決するためには、原因をプロセスごとに分解して明らかにする方法が効果的だと実感しました。広告にかかる費用と表示回数だけで費用対効果を計算しても、課題解決には至りません。しかし、クリック数や申し込み数といったデータを加えて各割合を算出することで、具体的な解決策のヒントを得ることができました。 A/Bテストはどう? また、業務では主に定量分析や可視化を中心に行っているため、これまで触れる機会の少なかったwebマーケティングで活用されるA/Bテストについて学べたことは非常に新鮮でした。 仮説、どう作る? さらに、日々の業務でデータ分析や問題解決を行う際、どうしても過去の経験や周囲の意見に基づくストーリーに頼ってしまい、データ活用が十分にできていなかったことに気付きました。今後は、「What」「Where」「Why」「How」の各ステップや様々なフレームワークを活用した仮説の立案を取り入れ、より効果的な解決策を模索していきたいと思います。

戦略思考入門

学びの本質を見抜く力を磨く挑戦

規模の経済性をどう理解する? 規模の経済性について学ぶ際、その本質を見抜くことが非常に難しいと感じました。頭で何となく理解できても、実際に各設問に対して理由を述べるアウトプットは非常に時間がかかります。特に、設問3において素早く本質を見抜き、的確に表現するスキルがまだ十分に身についていないことを痛感しました。 数字の背後にある本質を捉えるには? また、Factbookからデータを参照し、課題に対する戦略を構築することも重要ですが、数字だけにとらわれず、その背後にある本質を見抜くためにはなお時間が必要だと感じています。 ヒアリングの重要性とは? 推移データやFactbookを使い数値目標を設定する前に、現場の声をヒアリングやインタビューで拾うことが重要です。それによって、数字やフレームワークだけに頼ることなく、実行可能な戦略を立てていきたいと思います。今月中に異なる分野の3人にインタビューを行い、より魅力的なコンテンツ戦略を構築することを目指しています。

データ・アナリティクス入門

問いと仮説が導く学びの軌跡

仮説思考の始まりは? 常に目的意識を持ち、問いを立てることから仮説思考は始まります。まずは、何を知りたいのか、どんな結果を期待するのかを明確にしてから仮説を立て、必要なデータを集めて分析を行います。こうしたプロセスが、分析作業において無駄を省き、効率よく目的に近づくための鍵となります。 グラフ作成のポイントは? また、グラフなどの可視化資料を作成する際も、まず仮説や伝えたいメッセージ、そして対象となる相手を意識することが大切です。誰に何を伝えたいのかを明確にして、伝わりやすい構成でグラフを作ることで、情報の意味が正しく伝わります。 新たな発見はどう? さらに、問いを発見する一助として、最新の研究結果や知見に触れることが有効です。たとえば、研究論文を読む機会を増やしたり、仲間から新たな情報を得るなど、日常的に情報収集に努めることが求められます。説明資料を作成する際も、自分が何を伝えたいのかを整理し、論理的かつ簡潔な表現でまとめることが重要です。

「表 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right