戦略思考入門

捨てる大切さ、仕事を楽にする秘訣

捨てる考え方の重要性とは? 捨てることを実践する考え方が非常に有益であると感じました。特に、「餅は餅屋に任せる」という考え方は、すべてを自分で何とかしようとする私にとって非常に響くものでした。また、私の会社では外部に頼らず「自前化」を重視する文化がありますが、時にはプロに任せるという判断も必要ではないかと感じました。 アプローチの幅を広げるには? 現在進行中の課題に対するアプローチの幅が広がったと感じています。普段はあまり使用しないソフトを用いて仕事を進めることを検討していましたが、実際にそのソフトを扱っている部署に任せられないかといった方法もあることに気づきました。さらに、課題を改めて整理し、何を優先すべきかを十分に検討することの重要性を感じています。 海外業務移行での整理法 まずは、海外への業務移行において、移行すべき内容を整理する予定です。その際、日本で行っているが海外では不要となる要素を除外します。これにより優先すべき課題を特定し、何をやらないかを決定します。また、課題の最終的なゴールについても上司と議論する必要があるため、こまめに確認しながら進めていきます。

マーケティング入門

情緒価値で広がる魅力戦略

情緒的付加価値とは? これまで、商品の展開において情緒的な付加価値を意識したことがありませんでした。情緒的価値とは、商品が本来の使用目的に加えて提供できる+αの価値のことです。 カードの魅力はどう? 例えばカードゲームでは、プレイ中の楽しさという機能的価値だけでなく、パッケージの開封時に感じる喜びといった情緒的価値も存在します。封入率など、商品の設計に工夫を凝らすことで、この情緒的な部分を演出し、魅力ある商品戦略が実現できると感じました。 長期利用の秘訣は? また、商品やサービスを長期的に使用してもらうためには、付加価値の創出が重要だと考えます。顧客が商品を使う際にどのような感情を抱くかを想像し、その体験を豊かにすることが、結果として愛着や認知度の向上へとつながります。そのため、売り場のレイアウトの工夫や、接客における他社にはない+αの体験提供が求められると感じています。 付加価値はどう伝える? 実際に自分が関わっている商品で、意識的に付加価値が創出されているものがあれば、どのような商品でどんな付加価値があるのか、ぜひ教えていただきたいです。

データ・アナリティクス入門

グラフで見る!実務改善の秘訣

平均値の違いは? 平均値の種類やその違いについて整理し、理解を深めることができました。とりわけ、これまであまり使用する機会がなかった幾何平均についても、成長率といったテーマが出た際に活用できるよう意識する必要性を感じました。 分布と標準偏差は? 分布や標準偏差に関しては、これまで取り組んだことがなかった内容でしたが、グラフ化することで実務上の問題解決に繋がるという新たな視点を得ることができました。実際に、標準偏差はグラフにすると直感的に理解しやすく、非常に有効であると感じました。 代表値の比較は? また、代表値の比較を行う際に、ばらつきを示すグラフと代表値を並べて示す手法を知りました。これは、口頭での説明を簡略化する工夫としても効果的であるとの印象を受けました。以前、自社商品のカテゴリーの成長率について問われた際、どのような指標を用いるか迷った経験があり、現在では幾何平均も一つの選択肢として考えられるようになりました。 実務利用の事例は? 今後、平均値や標準偏差が実務でどのように活用されているか、具体的な事例があれば知りたいと感じています。

戦略思考入門

3Cとバリューチェーンで見えた新視点

分析手法はどう活かす? 3C分析やSWOT分析は、これまで漠然と使用していたものの、3Cは「市場」「顧客」「自社」の順番で解析することが重要だと学びました。自社については、たこつぼ化が進んでいる部分があるため、こうした分析を行う際には、問題に直面することが多く、ネガティブになりがちです。そのため、ポジティブな視点を持つことが重要であると感じました。 視点転換で何が見える? また、自身の所属する業界が特殊であるため、バリューチェーン分析は適用しにくいと考えていましたが、見方を変えることで新たな可能性が見えてきました。具体的には、製品が使われる顧客のフローを細分化し、異なる属性に分類することで、それぞれでの分析が可能となることに気づかされました。 戦略資料はどう作る? さらに、フレームワークを活用したプレゼン資料の作成に取り組むことで、他者の理解度の違いを確認できました。そこから得られた反応を基に、組織の戦略方針を策定することができ、来年の戦略作成のための判断材料としました。特に、バリューチェーン分析を咀嚼しつつ、それを資料作成に活かすことが大切だと感じました。

データ・アナリティクス入門

ビジュアルで味わう分析の面白さ

平均の意味は? 複数の平均(単純、加重、幾何)をビジュアルで理解できたのは大変参考になりました。計算自体は表計算ソフトを使用すれば難しくないものの、イメージをしっかりと思い出し、目的に合わせて正しく使用することが大切だと感じます。また、今まで漠然としか捉えていなかった標準偏差も、今後、平均とデータのばらつき具合を説明する際に大いに活用できると考えています。 分析方法はどう? 膨大な顧客情報や生産実績の分析においては、単純平均や幾何平均を用いた有用な分析方法があると実感しました。売れ行き製品の傾向をグラフで表現する際、散布図の利用も面白い発見です。これまで棒グラフによる比較が中心でしたが、何をアピールしたいのかを一歩深く考え、見せ方を工夫する必要性を感じさせられました。 データ活用はどう? 所属する営業グループ内でも、データ集計方法や見せ方に関して工夫が求められています。これまで、従来のやり方を盲目的に踏襲するか、各自の感覚に頼る方法に偏っていたため、私がリーダーとして理論に基づいたデータ抽出とグラフ選択を整理し、より効果的な活用方法を提示していきたいと思います。

データ・アナリティクス入門

数字で読み解く成長ストーリー

代表値はどう選ぶ? 分析を進める上で、仮説思考は非常に重要です。まずは、比較する際に代表値を決める必要があります。一般的には平均値を用いますが、データの特性に応じて加重平均や幾何平均を用いる場合もあります。特に成長率などを算出する場合は、幾何平均が適しています。また、外れ値の影響を避けるため、外れ値が存在する場合は中央値を代表値として採用します。 データばらつきはどう見る? 次に、データの比較では分布(ばらつき)も注視し、標準偏差を算出して分析します。標準偏差の値が小さいとデータ間のばらつきが少なく、大きいとばらつきが大きいことを示します。さらに、データの関係性を把握しやすくするために、ビジュアル化を活用することが効果的です。現在のデータの割合を示すだけでなく、平均値や標準偏差を算出し、これらの指標を比較に活用することで、より精度の高い分析が可能となります。 外れ値はどう確認? また、分析に入る前にはROWデータをしっかり確認し、外れ値が存在するかどうかを把握することが重要です。これにより、どの代表値を使用すべきか判断し、適切な分析手法を選定することができます。

クリティカルシンキング入門

伝わる!魅せる!スライド作りの秘訣

伝えたい内容はどうなってる? まずは、伝えたい内容を明確にすることが大切です。内容に合わせたメッセージやグラフ、アイコン、絵などを工夫し、資料全体の配置にも注意を払います。視覚的な要素の選択においては、読者がどのような印象を受けるかを事前に考慮し、適切な強調表現、フォント、色を使用することが求められます。 伝達方法はどうすべき? 上司や部下に部署の方針や活動内容を伝える際には、スライドを活用するケースが多いと感じています。たとえグラフの利用が多くなくても、報告の要旨やメッセージ、意図を明確かつ端的に表現するためには、スライドが非常に有用です。 資料作成の見直しは? これまで、過去に作成した資料をそのまま流用したり、言いたいことを並べただけの資料になってしまうことがありました。そこで、まずは自分の中で伝えたい内容をしっかりと整理し、その後、どのように表現すればより明確に伝わるかという設計図を考えるようにしました。一度スライドを作成した後も、伝えたい内容の純度が損なわれる表現や誤解を招く表現が含まれていないかを見直し、より良い資料作りを目指しています。

データ・アナリティクス入門

平均再発見!生データが語る学び

平均って何だろう? 基本的な代表値である平均とばらつきを再確認しました。また、関連するフレームワークの動画を通じて、単純平均、加重平均、そして幾何平均といった具体的な計算方法が存在することを学び、以前は知っていた幾何平均についても、計算方法や名称を含めて改めて理解することができました。 中央値はなぜ大切? 技術職として、日常的に平均値や標準偏差を用いたばらつきの分析を行っています。中央値については、その定義や目的を理解しているものの、実際の業務では頻繁に使用することはありません。しかし、中央値が持つ目的を意識し、グラフや図を用いて全体の分布や外れ値の有無を確認することで、解析の正確性を担保していると感じています。 外れ値の確認方法は? また、普段からデータに触れる中で、改めて図での表示を行い、データの前処理における外れ値の存在を意識することの重要性を再認識しました。どの業務においても、正しい目的意識を持つことが根幹であると実感しており、今回学んだ単純平均、加重平均、幾何平均を活用して、目的に即した正確な解析を進めていきたいと考えています。

クリティカルシンキング入門

データ活用で見えた新たな視点と工夫

データ加工法をどう活用する? データの加工法について学びました。与えられたデータをそのまま使うのではなく、自分で項目を追加することを意識することが重要です。例えば、絶対値や相対値(比率)を追加することで、データにひと手間加えることができます。数字をグラフにすることも非常に効果的です。また、データを分解する際には、複数の切り口で考えることで異なる見解が得られることがあります。 人件費分析で何を検証する? 現在、人件費分析を行っているため、今回学んだ切り口や加工法を実践しています。具体的には、時間外労働時間の妥当性を検証するために、データを性別、既婚未婚、年齢(若手かベテランか)、部門ごとに切り分けて情報を抽出し、グラフで可視化します。 PowerBIでどう可視化する? 人事データを入手したら、比率や不足している情報を追加し、勤怠情報としての表を作成します。このデータを可視化するためにPowerBIを使用し、グラフ化します。さらに、散布図を用いて時間外労働時間と相関のある事柄を確認し、そのデータを参考に実際に関連性があるかどうかを調査します。

クリティカルシンキング入門

考え方の基本とツールで広げる思考術

基本的な考え方を学ぶ 本講座を通じて、考え方の基本や手法を学びました。特に重要だと感じたことは以下の3点です。 第一に、考え方は偏りが出やすいということ。次に、考え方を広げるためにツール(ピラミッドストラクチャーやMECEなど)を使用すること。そして第三に、客観的に見て本当に正しいかを確認することです。 直感よりも分析を重視 これからも忘れないでいたい点は、直感ですぐに動くのではなく、きちんと立ち止まり、分解して考えることです。これは特に、同僚や上司、取引先への企画や提案、ディスカッションやコミュニケーションツールでのやり取り、そして抽象的な問題が発生したときに意識して行動していきます。人に正しく伝えることが最も重要だと考えています。 クリティカルシンキングの実践 今後始めたいこととしては、クリティカルシンキングのインプットを継続することです。逆に、何事もいきなり清書から始めることを止めたいと思います。そして、クリティカルシンキングのアウトプットを続けていきたいです。 これらを引き続き実施することで、効果的に活用していきます。

リーダーシップ・キャリアビジョン入門

リーダーシップの真髄とフィードバックの技

リーダー像はどう変わる? ライブ授業を通じて自身の目指すリーダー像を言葉にしたり、人と共有する経験を重ねることで、そのリーダー像が一層鮮明になりました。また、フィードバックを行うグループワークでは、フィードバックの難しさを実感しました。相手に与える印象や使用する言葉の選択は、結果を見て初めて判断できますが、その前にしっかりと考えることが大切だと感じています。 伝え方はどう工夫する? 私は定期的な部下との進捗確認の面談や半期の評価面談でフィードバックを行う機会があるため、相手のタイプを分析し、論理的に伝える内容や順序を考えて伝えることが重要だと考えています。これが実際に最も有効に活用できる場面だと思っています。 面談はどう活かす? 近日中に実際に進捗確認面談を予定しているため、その際にこれらの知見を活用したいと思います。特に、評価基準や期の初めに設定した目標を振り返りながら、それに対する進捗を確認し、話を進めることが必要です。また、相手が思考することを苦手とするタイプであることを念頭に置いて、打ち合わせを進めていきたいと考えています。

データ・アナリティクス入門

データ分析にAI活用!新たな発見の連続

ChatGPTを活用する意味は? 実践演習がメインの週だったが、データ分析は答えがない世界だと感じているので、自分で考えるだけではなくChatGPTを共に使用して問題解決を試みた場合、どのような成果が得られるかに焦点をあてて演習に取り組んだ。普段は自分の頭で考え一人で結論を出していたが、そのことに限界を感じていたため、今回の受講はAIを活用する実践の場として非常に学びが多かった。 AIの活用で得られる視点は? どれだけ訓練を積んでも、人間である以上、自らの思考には必ず偏りがある。多面的な視点でデータ分析を行うことが問題解決の第一歩であり、AIを活用して多くの視点を得ることが有効だと改めて気づくことができた。これからは、普段からAIを十分に活用するよう心掛けたい。 AI相談の工夫を学ぶ データを分析する際、必ず一歩立ち止まり、AIに素直に相談してみるようにする。AIをデータ分析のパートナーとするため、相談の仕方を工夫することも学んだ。正解を出すことを目的とするのではなく、自分の思考を広げるためのAI活用を身につけていきたいと思う。

「使用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right