クリティカルシンキング入門

ピラミッドストラクチャーで論理的思考を磨く方法

ピラミッドストラクチャーの効果とは? ピラミッドストラクチャーは、論理的に物事を考える際に非常に効果的で取り入れやすいツールだと感じました。結論を導き出すためには、その根拠が必要であり、他人に伝えるためには具体例を挙げて説明することが重要です。 ビジネスシーンでの応用法は? このピラミッドストラクチャーは、結論づけや主張が求められるあらゆる場面で活用できます。例えば、会議での発言や業務フロー改善の企画時などです。特に異なる立場の人が連携する業務や課題を議論する際には、主語述語を明確にし、結論の根拠を明確にすることで、内容をきちんと伝える必要があります。 自己改善への適用事例は? 自分で結論を出したり主張する場面では、ピラミッドストラクチャーを用いて根拠の具体例まで提示した上で発言するように心がけています。また、業務改善のミーティングでは、この手法を用いて課題解決策を説明することが効果的です。さらに、各製品のマーケティングミーティングの際には、営業やマーケティングが考えた施策をピラミッドストラクチャーで分析し、具体的な根拠を明確にすることで、施策の質向上と効果の最大化を図る努力をしています。

クリティカルシンキング入門

振り返り文で語る成長の秘訣

日本語を正しく使う重要性とは? 「日本語を正しく使う」ことは、私が常に心掛けているテーマです。後輩指導でも語彙力と読解力を伸ばすことを強調しています。文章を書くときには、順序立てて記載することが重要であり、ピラミッド構造など様々な手法があると考えています。普段からそれを実践していますが、相手によって伝わる内容には違いが出るため、これは難しい課題です。しかし、10人中8割の人に伝わるように心掛け、主語と述語を意識して、学んだことを基に成果を出していきたいと思っています。 ドキュメントにどのように反映する? 文章を文字起こしするドキュメントには多くの種類があり、さらにAIによる情報の簡略化が進む中で、人間らしい言葉遣いを意識しています。また、相手が誰であるか、どのような情報が必要かを考慮しながら、ドキュメントに洗練された形で反映させていきたいと考えています。 目先の計画書作成の工夫は? まずは目先の計画書などに意識を反映させ、他者の意見を取り入れながら改善を図ります。その過程で、自分が知らない業務の部分について意見が集中しないように、章立てや論理構造に工夫を凝らして作成していきたいと思います。

データ・アナリティクス入門

分解で掴む業務改善のヒント

どこにボトルネック? 問題の原因を明らかにするには、業務プロセスを分解して、どの段階にボトルネックがあるかを特定することが重要だと学びました。実務ではインターネットを活用した営業を行っていないため、A/Bテストは実施しませんが、同一期間・同一条件下で検証項目を比較するという手法は、他の場面でも十分に応用できると感じました。 セグメントはどう見る? 自部門で伸び悩んでいる事業についても、まずは問題の原因究明に取り組み、適切な対応策を検討する必要があると考えています。そのため、部門内で営業セグメントごとに実績を分析し、各セグメントの問題点を洗い出した上で、具体的な対策を立案・実施し、再度分析するというサイクルを構築したいと思います。 対策はどう実施? 具体的には、3月末時点でのセグメント別業績データをもとに、前年度と当年度の成長率を比較します。低迷しているセグメントについては、問題の原因を徹底的に分析し、翌年度に向けた対策をまとめ実行します。その後は、各四半期ごとに進捗を検証し、現状を把握するとともに、必要に応じて追加の対策を講じるという業務改善の仕組みを根付かせることが目標です。

データ・アナリティクス入門

仮説を超えて広がる学びの可能性

仮説はどう考える? 仮説を立てる際には、ただ闇雲に考えを巡らせるのではなく、3Cや4Pといったフレームワークを有効に活用することを学びました。その上で、仮説は複数立てることが重要であると感じています。 本当に必要なデータは? また、データ収集に関しては、まず既存のデータを検討し、不足している情報がある場合に新たなデータを集める必要があると理解しました。立てた仮説に都合の良いデータだけを選ぶと説得力が欠けるため、注意深くバランスをとることが求められます。 問題の原因は何か? さらに、業務における障害分析では、問題の解決に向けた仮説の立案が主な目的となります。現状で行っている真因分析とも連動し、What、Where、Why、Howのプロセスを意識して問題を深く掘り下げることが必要だと感じました。 実践で学ぶヒントは? 実際、日々発生する障害や事象について原因を深掘りし、複数の仮説を検討する癖をつけることで、経験を積んでいきたいと思います。ただし、データ収集の方法には工夫が必要であり、過去の事例をカテゴリー分けするなど、データを整理・加工する手法の改善が求められると考えています。

データ・アナリティクス入門

数字に秘めた改善の真実

平均と中央値はどう違う? 平均は全体の傾向を示す便利な指標ですが、外れ値の影響を受けやすいため、必ずしもデータの中心を正確に表しているわけではないと再認識しました。一方、中央値はデータを並べたときの中央の値であり、外れ値の影響が少ないため、偏りのあるデータに対して有効だと感じています。また、標準偏差を活用することで、同じ平均値でもデータのばらつきに違いがあることを明確に把握できる点が印象に残りました。 営業改善、ポイントは? 営業店の業務改善においても、代表値を活用する意義を学びました。具体的には、各店舗の業務処理時間を平均と中央値で比較し、処理時間が極端に長い業務がないかを確認することで、改善策の提案につなげる方法が効果的です。さらに、各営業店ごとの業務プロセスのばらつきを標準偏差で表現し、オペレーションの違いを把握する取り組みが有用であると考えています。 業務負荷の見極めは? また、ヒストグラムなどを用いて業務負荷の高い部分を特定し、改善の優先順位を決める手法にも触れ、業務効率化の進捗をグラフでフィードバックすることで、改善効果を視覚的に伝える方法の重要性も実感しました。

マーケティング入門

ターゲットの心を捉えるヒント

特定商品はなぜ支持される? マーケティングでは、すべての人に売ろうとするのではなく、特定のターゲットに向けた商品が支持を得るという点を学びました。いかなる商品も全ての人に魅力的ではなく、特定の誰かに強く刺さる商品だからこそ結果として広い支持を得られると実感しました。 顧客価値はどう伝える? そのため、どの顧客に向けた商品なのかを明確に設定し、その人にとっての価値を的確に伝えることが重要であると考えます。この考え方は、営業活動においても非常に役立つものです。 伝え方は何がカギ? 実際、同じ商品やサービスを提案する際でも、顧客によって反応や成約率が異なる場面では、「誰に、何を、どのように伝えるか」という設計の重要性が一層感じられました。今後は、売れている商品を単なる感覚ではなく、しっかりとした仕組みとして捉え、セグメント設定や訴求方法を意識することで、より効果的な営業活動に結び付けていきたいと考えています。 改善の機会はどこに? また、マーケティングのフレームワークや分析手法を学び、営業活動の結果を振り返りながら改善の機会を掴む力を身につけたいという思いも深まりました。

アカウンティング入門

会計実務に迫る学びの瞬間

大手企業の会計はどう? ある取引実績のある大手企業の事例から、他社の会計状況に具体的に興味を持って向き合うことができました。アトラクション作成に必要なコストの減価償却やロイヤリティの考え方、また授業内で触れられたスポンサーが費用を負担して宣伝につなげる手法など、これまで疑問に感じていた点を具体的でわかりやすい形で学ぶことができました。 基礎理解で自信は? 会計の基礎を理解し、考え方をより深められたことで、経営層との折衝にも自信と重みを持って臨めるようになったと実感しています。自社の事例を客観的に振り返り、現状のビジネスの強みや改善点を適切に把握し、意見として示すことができればと考えています。 P/L分析で成長は? さらに、自部門のP/Lを詳しく読み込み、同業他社と比較することで、改善点やさらなる成長ポイントを探ってみたいと思います。特に原価率については、これまであまり疑問を持たずに指標として活用してきましたが、現状を踏まえた上で適正なビジネスモデルの再構築を検討し、点と点でしか捉えられていなかった部分を、全体的な線としてシミュレーションする試みをしてみたいと考えています。

マーケティング入門

実践で見える!サービス革新の鍵

なぜ売れる理由は? 実際にある企業を例にとり、その商品の売れる理由を実践的に分析する機会がありました。この分析から、自社の強みについて改めて考えるきっかけとなりました。 どう顧客を捉える? また、顧客ニーズを深く理解するために、カスタマージャーニーやペインポイントに着目する手法を学べた点も大変有益でした。自社サービスにおける改善のヒントを得ることができたと感じています。 どこに改善の鍵は? 現在、サービスの課題解決に向け、アンケートやインタビューを実施する予定です。顧客のカスタマージャーニーを整理し、どこに改善ポイントがあるのかを明確にすることで、新たな解決策の発見に結びつけたいと考えています。 何が成功の秘訣? 具体的には、以下の取り組みを進める予定です。まず、アンケートやインタビューを通じて顧客ニーズを深掘りし、次にカスタマージャーニーを整理します。さらに、競合他社がどのように顧客と関わり、サービスの提供や改善に取り組んでいるかを調査し、その他、様々なサービスが売れている理由について、現地での観察や実際の体験を通して考察していくつもりです。

戦略思考入門

日常に光る戦略のひらめき

戦略思考の実践法は? 戦略的思考とは、範囲の広さは異なるものの、実は日々の業務の中で自分なりに実践していることに気づきました。ゴールと現状のギャップを明確にし、複数の手段からリスクやコストなど様々な要素を検討して実行することが、戦略的思考だと理解しています。 日常の判断はどう取り入れる? 例えば、日常の交渉や判断・決断の過程において、無意識に戦略的思考が働いている場面があると感じています。また、チームの運営や改善策を模索する際にも、メリットを最大化するために現実的な手段を検討するという考え方が取り入れられています。今後は、この意識をさらに高め、不足していた要素を追加しながら活用していきたいと考えています。 全体の視野はどう広げる? 一方で、普段の思考は自分自身やチームという身近な領域に留まっていることが多いです。組織全体や会社といったより大きな視野での戦略的思考に関しては、まだ学ぶべき理論や手法が多く存在します。そのため、重要な決断を下す前には、学んだ知識やフィードバックがしっかりと反映されているかを確認しながら、日常業務に取り入れていくよう心がけたいと思います。

データ・アナリティクス入門

グラフで見る!実務改善の秘訣

平均値の違いは? 平均値の種類やその違いについて整理し、理解を深めることができました。とりわけ、これまであまり使用する機会がなかった幾何平均についても、成長率といったテーマが出た際に活用できるよう意識する必要性を感じました。 分布と標準偏差は? 分布や標準偏差に関しては、これまで取り組んだことがなかった内容でしたが、グラフ化することで実務上の問題解決に繋がるという新たな視点を得ることができました。実際に、標準偏差はグラフにすると直感的に理解しやすく、非常に有効であると感じました。 代表値の比較は? また、代表値の比較を行う際に、ばらつきを示すグラフと代表値を並べて示す手法を知りました。これは、口頭での説明を簡略化する工夫としても効果的であるとの印象を受けました。以前、自社商品のカテゴリーの成長率について問われた際、どのような指標を用いるか迷った経験があり、現在では幾何平均も一つの選択肢として考えられるようになりました。 実務利用の事例は? 今後、平均値や標準偏差が実務でどのように活用されているか、具体的な事例があれば知りたいと感じています。

データ・アナリティクス入門

分解して実験!柔軟思考の学び

原因はどう分析する? 原因を把握するためには、まず複数のプロセスに分解して考え、どこに問題が潜んでいるか確認することが重要です。良さそうな仮説が浮かんだら、すぐに試して実際の反応を収集し、実験や検証を通じてブラッシュアップしていくプロセスが効果的です。正しい原因を探しすぎず、迅速な行動が大切だと思います。 どこで顧客が離脱? ファネル分析は、顧客の行動を理解するのに役立つ手法です。各プロセスを細かく分解し、数値や割合を比較することで、どの段階で大きな離脱が発生しているかが明確になります。例えば、ECサイトにおいては、検索段階なのか、カート投入後なのか、決済時なのかといった具体的な離脱ポイントが把握できる点が特に有用です。 分析方法のポイントは? また、What、Where、Why、Howというステップを踏むことで、データ分析の精度が向上し、迅速な問題解決につながると実感しています。仮説を複数立てたりプロセスを細かく分解することは大切ですが、それに固執しすぎると原因分析や具体的な改善策の検討に進めなくなるため、柔軟な思考を保つことが重要だと感じました。

データ・アナリティクス入門

仮説で切り拓く未来戦略

仮説をどう整理する? 今回の講義では、複数の仮説を立て、その網羅性に注目する視点が非常に印象的でした。これまで仮説検証に取り組む際、十分に意識していなかった点も改めて考える良いきっかけとなりました。特に、結論を導くための仮説と問題解決に向けた仮説を、過去・現在・将来の軸で整理して考える手法は、新たな学びとして大変有意義でした。また、仮説を証明するために必要なデータの収集方法や、データを加工する際の視点についても、今後さらに知識を深めるべきと感じました。 データで何を探る? さらに、Google Analytics以外の情報源、例えば売上データや顧客データ、購買データなどから顧客の傾向や購買パターンを把握し、適切な施策へと結びつける重要性を再認識しました。仮説検討時には3Cや4Pの視点を意識し、より具体的な改善策に取り組んでいきたいと考えています。担当クライアントのデータを活用しながら、どの組み合わせの商品が選ばれるのか、また一回あたりの購入金額をいかに向上させるかなど、具体的な戦略を検討し、常に新たな課題や仮説に向き合う姿勢を持ち続けることが大切だと実感しました。
AIコーチング導線バナー

「改善 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right