デザイン思考入門

生成AIとデザイン思考で切り開く挑戦

生成AIの使い方は? 生成AIを効果的に使いこなしている皆さんの姿に驚きました。また、提案されたアイデアが多角的な視点から考えられており、誰も同じコンセプトで作成していなかった点が印象的でした。自分もどの部分でユニークな回答を生み出せたのかを見直し、今後の取り組みに活かしていきたいと考えています。 課題解決の流れは? デザイン思考入門で学んだ共感、課題定義、発送、試作の手法を総務業務の改善活動に積極的に取り入れていきます。まずは、様々なイベントに積極的に顔を出して情報を収集し、皆さんが抱える問題点を洗い出します。その中で特に意見が多かった項目をもとに課題定義を行い、場合によっては実際の現場の声を反映したペルソナ作成も検討しますが、生成AIを活用することで自分では捉えきれない視点も網羅できるため、その力も借りながら進めていくつもりです。

データ・アナリティクス入門

仮説と実践で拓く最適解

プロセス改善の秘密は? 問題解決のステップの枠組みを学ぶ中で、複数の切り口から解決策を検討するプロセスを整理する方法の大切さを実感しました。各プロセスごとに重要点に沿って仮説を立て、判断基準を明確にすることで、より的確な解決策が導き出されると感じました。また、A/Bテストを活用した検証手法からは、有効性の高い方法を見出す「実践的な知識」を得ることができ、今後の業務に大いに役立つと考えています。 アンケート改善のヒントは? 顧客アンケートを実施する際には、回答率向上のためにA/Bテストを導入し、仮説を立てながら改善点を洗い出すプロセスを試してみたいと思います。具体的には、EDMやイベント等を活用する方法の有効性を検証し、アンケート収集方法の効率化および精度向上に繋げることで、実務に直結する解決策を見出すことができると期待しています。

データ・アナリティクス入門

実践で変える!問題解決の第一歩

試す手法は何だろう? 問題の要因がある程度明確になったら、試しやすい手法で課題解決に向けた取り組みを実際に試すことが重要です。たとえば、既存の手法と定量的に比較できるA/Bテストのような方法を設計し、実践することが望まれます。 改善はどう実現する? また、課題の分析だけで満足せず、実際に改善を施して目的を実現することが肝要です。データ分析を行う際には、最終的に何を実現したいのかという目的を常に念頭に置く必要があります。 仮説はどう組み立てる? 一方、データ分析の手法に囚われ過ぎると、単にデータを出すことに多くの時間がかかり、問題解決に辿り着かない恐れがあります。したがって、まずは問題の要因を特定し、その後、有識者とのディスカッションや壁打ちを通じて、改善のための仮説を迅速に立案・実行できるように取り組むことが大切です。

データ・アナリティクス入門

数字で見つける成長のヒント

手法の違いは何だろう? 一般的な平均値は手軽に利用できますが、データのばらつきや目的に応じて、加重平均や幾何平均などの手法を採用する必要があると理解しました。普段は精度管理のため標準偏差を使用していますが、具体的な事例を通じて、他の場面でも活用できるというイメージが湧きました。 分析のコツは何? データの比較から仮説を立てる苦手意識が少し和らいだように感じます。定量分析では単純平均や標準偏差を用いていますが、定性分析も一旦定量値に置き換えて試してみたいと思います。また、人事考課にもデータが活用できるため、評価者間のばらつきや傾向を把握するのに役立つと考えています。さらに、臨床検査の提供プロセスにおいて、各段階でのかかる時間を分析し、収束していない部分を可視化することで改善の余地を見出せる可能性を感じました。

データ・アナリティクス入門

数字が語る成長ストーリー

どの指標で問題解決? 顧客の行動をクリック率やコンバージョン率などの定量的指標で捉えることで、どのステップに主な問題があるかを把握できる点が非常に参考になりました。このアプローチにより、各プロセスのボトルネックを明確にし、改善点を正確に捉えることが可能となります。 点数化と離脱はどう? また、各項目を点数化して意思決定を行う方法は大変勉強になりました。各指標にはそれぞれ長所と短所があるものの、複合的に判断することで、優先事項の認識を合わせ、定量的な基準を共有できると感じました。さらに、顧客がどのステップで離脱しているのかをファネルの視点から整理する手法は、成果に結び付けるための具体的なアクションプランを立てる上で非常に有用であり、今後の分析や社内での課題解決の手法として周知したいと考えています。

戦略思考入門

顧客視点で極める差別戦略

顧客ニーズを考えるには? 今回の学習を通じて、まず顧客が求めるものを念頭に置いた上で、いかに差別化を図るかが重要であることを学びました。また、自社の最大の資源を活かす手法としてVIRO分析(VRIO分析)の考え方を取り入れる必要性も感じました。同業界だけでなく、他業種にも目を向けた分析の視点を持つことが大切だと実感しました。 旅行業界の未来は? 特に旅行業界では、提供する商品が似通っているため、どのようにして他社と差別化を図るかが長年の課題となっています。今回学んだVRIO分析を含め、分析手法そのものを再考し、異なる業界の知見も取り入れることで新たな発見を得たいと考えています。また、組織内のマネジメントにおいても改善の余地があると感じ、内部で再び意見交換の場を設ける提案をしたいと思いました。

データ・アナリティクス入門

実例でわかる抜け漏れゼロの分析術

抜け漏れチェックはどうする? 分析の要素を検討する際、抜け漏れや重複がないかどうかを意識することがとても重要だと感じました。これまで、何気なく分析要素を挙げていたため、知らないうちに抜け落ちたり、同じ内容が重複してしまったりするケースがあったと思います。今後は、ロジックツリーなどの手法を活用し、適切かつ網羅的な分析要素を抽出できるよう努めたいです。 売上向上に本当に効く? また、離職率の改善や売上増加といった課題に対して、今回の学びが有効に活かせると感じています。動画で紹介されていたように、離職の原因分析や売上向上のために何がネックになっているのかを明確にすることで、具体的な対応策を検討する際の手助けになると考えています。

クリティカルシンキング入門

日本語の壁を乗り越える!伝わる文章術

文章の伝達で何を感じた? 自分の書く文章が、誤解を招く表現になっていることや、相手に正確に伝わっていない点があると再認識しました。文章を書く際に、日本語の難しさや主語と述語の関係の重要性を改めて実感しています。 どう書けば誤解は無くなる? 相手に確実に伝えるためには、無理に一つの文にまとめず、必要に応じて文を分けることが大切です。誰が何をするのか、主語を明確にし、文章が論理的に展開されるよう注意を払っています。 指示伝達の改善方法は? さらに、職場でチームメンバーに指示を出す際は、迅速かつ正確な意思伝達が求められます。そのため、余計な複雑な表現を避けて、箇条書きなど具体的な手法を用いることも有効です。

クリティカルシンキング入門

グラフでひらく、学びの新視点

データ分解の意義は? データを分解することで、新たな視点を得ることの重要性を学びました。特に、グラフを活用することで情報を直感的に整理でき、表だけでは気づきにくい傾向や変化を視覚的に捉えやすくなる点が印象的でした。このため、分析や説明の作業がよりスムーズになると実感しています。 業務応用のポイントは? また、日々の業務で社内のイベント実績やアンケート結果の集計・分析を行う際、今回学んだグラフの効果的な使い方や論理的な整理手法を活かせると感じています。視覚的に参加状況や満足度の傾向を示すことで、関係者への報告は説得力を増し、次回のイベントへの改善提案もより具体的に行えるようになるでしょう。

データ・アナリティクス入門

原価分析で挑む学びの力

学びの成果は何か? 全体を振り返ると、学んだ内容について、しっかり理解できた部分と、まだ定着が十分でない部分があると感じました。本コースで学習した知識を、繰り返しの学習と実践を通じて自分のスキルとして定着させるため、今後も継続的に取り組んでいきたいと思います。 原価分析の活用は? また、現在従事している原価分析の業務において、今回習得した分析手法を活かしていきたいと考えています。自社の原価から浮かび上がる課題や、原価算出方法における問題点を、自分なりに洗い出し、経営陣へ根拠を持った提案を行うことで、業務の改善につなげていきたいと思います。

戦略思考入門

選択の極意:数値で裏付ける挑戦

戦略の選択方法は? WEEK4では「戦略における選択(捨てる)を身につける」というテーマを通して、選択する際には定量的なデータの分析が不可欠であることを学びました。同様に、WEEK5では数値化によって物事を可視化する手法を学び、定量化の重要性を再確認することができました。 新製品策の評価は? 現在の職場では、従来の製品とは異なる新しい製品の開発が求められています。新たな取り組みでは、多くの改善策や施策が立案されますが、その効果を数値で評価することで、結果が低いものを排除し、優先順位を明確にして着実に実行していきたいと考えています。

「改善 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right