データ・アナリティクス入門

試行錯誤で見えた成長のヒント

原因はどこにある? 問題の原因を探る際は、まず全体のプロセスに分解し、どの段階で課題が発生しているかを明らかにします。その上で、解決策を検討する際には、複数の選択肢を洗い出し、根拠に基づいて最適なものに絞り込む手法が重要です。 A/Bテストの意味は? また、A/Bテストはシンプルで運用や判断がしやすいというメリットがあり、低コストかつ少ない工数で実施できるため、リスクを最小限に抑えながら改善を進める有効な手段といえます。 利用状況の課題は? 現在進めているサービスについては、利用者の活用状況を分析し、どのように利用され、さらに活用を推進するためにはどのような施策が効果的かを検討することが課題となっています。そこで、まず現状の利用状況を詳細に把握し、その分析結果をもとに仮説を立て、改善のための施策を検討していきます。 次のステップは? 具体的には、各施策を一つずつ実施し、その結果を確認しながら次のステップへ進んでいく方針です。施策の実施期間は概ね1~2週間を想定していますが、内容とともに期間も適宜見直しながら検討していく予定です。

データ・アナリティクス入門

分解思考で掴む改善のチカラ

原因分析はどう進める? 原因の分析にあたっては、まずプロセスごとに分解し、確認することが大切だと感じました。特に「what/where/why/how」を意識し、まず「where」から入念に分析することで、その後の「why」や「how」の解像度が高まると理解しています。 A/Bテストってどうやる? また、A/Bテストが有効な手法であることを学びました。その際、検証する「要素」は極力少なくし、その他の条件は共通とすることで、スコープを狭めることが重要だと感じました。実際にアプリ上でプッシュ通知とバナーを用いたA/Bテストを実施した経験から、振り返ると「キーメッセージ」に差が生じてしまった点が課題として残りました。 ログイン改善は何が? さらに、アプリのログイン率向上を図るため、ログインに至るフローを細かく分解し、原因の追究を行いたいと考えています。特に、パスワード設定の箇所で離脱するユーザーが多いという仮説に基づき、検証からスタートする予定です。その後の改善策として、ユーザーインタビューやUIテストの実施を検討しています。

クリティカルシンキング入門

1スライド、1メッセージの魔法

グラフ選びはどうする? スライド作成においては、単に好きなグラフを使うのではなく、伝えたい意図に合わせたグラフを選ぶことが大切です。語り手が強調したいメッセージ(たとえば、順調な増加など)をしっかりと込め、読み手に伝わりやすい順序で情報を配置します。さらに、重要な部分は色や矢印を利用して強調し、視覚的に訴える工夫を施しています。 伝え方はどう整理? また、動画でのお客さんへのセールス、講義、ステップ配信のシナリオ作成、セールスレターによる長文の配信、さらにはお客さんへの定期コラムの作成といったさまざまな場面で、これらの手法が活用されています。どの場面においても、伝えたいポイントを端的にまとめる「1スライド1メッセージ」の原則が生かされています。 論理の整合性は? ただし、表現力に自信が持てる一方で、その裏側にあるロジックの安定性には改善の余地があります。この章で学んだ分かりやすい表現をより効果的にするためには、事前のロジックツリーやピラミッドストラクチャーを徹底し、情報の整理と論理の一貫性を確保することが今後の課題と言えるでしょう。

アカウンティング入門

実例で感じる財務の魅力

ライブ配信の魅力は何? ライブ配信を通じた実例を交えたワークショップに参加し、これまで学んできたP/LとB/Sの知識がより深まったと実感しました。特に、取り上げられた企業の事例はイメージしやすく、各数値に対して仮説を立てながら検証するアプローチの重要性を再認識することができ、今後のビジネスプラン作成にも役立てたいと感じました。 真の課題はどこに? このワークショップで学んだ手法を活かして、改めて自社の財務3表を詳細に分析し、真の課題がどこにあるのかを明らかにしたいと思います。また、直近3年間の財務状況を振り返ることで、これまでどのような施策や対応が取られてきたのかを確認し、その知見を今後の改善に繋げる所存です。 予算編成で何が見える? さらに、本講座で紹介された参考図書の内容や動画の視聴を通じ、アカウンティングスキルを一層磨いていく予定です。現在は2025年度の予算編成が迫っていることもあり、足元の業績を丹念に分析し、予算の内容についても十分に考察することで、今後の会社の確かな成長を実感できるよう努めていきます。

データ・アナリティクス入門

数字で読み解く現場改善の秘訣

データ分析はどう理解? データ分析の手法について学び、既存のメソッドを活用することでデータ内に潜む意味を解析できることを理解しました。ただし、MECEの設定基準やその手法についてはまだ不明な点があるため、今後は確認を重ね、分析力の向上に努めたいと考えています。 現状のITは十分? また、職場で業務改善を担当する中で、現在の環境では活用可能なITリソースが十分に利用されていないという認識に至りました。単に使い方や技術的な問題だけでなく、業務の種類、内容、工数、手順などが十分に把握されないままツールが導入されている可能性を感じたため、まずは自身の置かれている環境の理解を改めて確認する必要があると実感しました。 業務改善の手法は? 今後は、職場内の業務項目、分類、関連する法令、関わるステークホルダー、工数、作業手順をリストアップし、最適なツールの選定や作業方法の見直しにつなげていく予定です。具体的には、現在使用している掲示板の改善に向けて、上記の内容を全員に再認識してもらうための作業と、その手順書の作成を進める考えです。

データ・アナリティクス入門

ロジックツリーで問題解決!私の成功体験

問題解決のプロセスをどう進める? 問題解決のプロセスは、WHAT・WHERE・WHY・HOWの順で考えていくことが重要です。特に、WHERE・WHY・HOWを考える際にはロジックツリーを活用してMECEに分解することが有効です。分解の方法には層別分解と変数分解の二つがあります。 キャッシュフロー改善の手法は? 事業の課題に対する対策を検討する際、この手法は非常に役立ちます。例えば、「キャッシュを黒字化したい」という課題に対して問題の原因を特定することができます。ロジックツリーを用いて、営業キャッシュフローを改善するのか、投資キャッシュフローを改善するのかといった視点や、どの製品が特に原因となっているのかを特定することができると考えました。 過去の実績から何を学ぶ? キャッシュ改善(WHAT)という視点において、まずは過去の実績からどの項目に特に原因があるのかを探り、特定の製品や項目に対して大きな変化がある部分を特定したいと思いました(WHERE)。その上で、それが起きている原因を特定し、対策について検討する計画です。

データ・アナリティクス入門

比較と分析で拓く学びの未来

目的は明確ですか? 分析を始めるにあたって、まず目的と最終ゴールを明確に設定することが重要です。これにより、次に行う比較対象の設定や分析手法の習得がスムーズに進み、上席が判断しやすい情報を提供できるようになります。 比較で何が分かる? 分析の本質は比較にあり、対象を明確にすることが成功の鍵となります。現状では、課題に対する意識はあるものの、十分な分析ができていなかったり、仮説はあるものの分析に着手する時間が取れないという状況が見受けられます。しかし、単に課題を解決するのではなく、事業全体の改善を目指し、情報公開や信頼獲得、認知拡大、ブランディングへとつながる流れを作ることが求められています。 分析の仕組みは? そのため、まずは言語化や情報整理、データ収集と集約を丁寧に行い、その上で効果的な分析を実施する仕組みを確立する必要があります。私のミッションは、組織内の情報を安全に集約・整理し、課題や仮説を明確にした上で、比較対象となる市場の情報と合わせた総合的な分析を行い、意思決定のために適切な報告体制を整えることです。

データ・アナリティクス入門

論理で切り開く学びの4つの道

どんな順番で進む? ロジック重視のアプローチとして、まずはWhat・Where・Why・Howの順に段階的に思考を進めることが基本となります。最初に「What」で、例えば売上が前年比で10%減少しているといった事実を明確にし、次に「Where」でどの地域や商品カテゴリでその現象が発生しているのかを特定します。 改善の秘訣は何? 続いて「Why」で、来店数の減少やリピーター率の低下といった具体的な要因を洗い出し、最後に「How」で、どのように改善策を実施していくかを検討します。この際、要因や改善策を「顧客側の要因」「商品力の要因」「販売手法の要因」など重複なく漏れなく整理するため、MECEの視点が重要となります。 成果はどう生まれる? このプロセスは、感覚に頼らず事実に基づいた論理的なアプローチを実現し、問題解決に向けた具体策を確実に策定するためのものです。分析結果は定期的に共有し、周囲と認識を一致させながら、仮説→検証→実施→再検証のサイクルを迅速に回していくことで、持続的な成果の創出を目指します。

データ・アナリティクス入門

実践で拓く改善と挑戦

A/Bテストの意義は? A/Bテストは、対象をA群とB群に分け、同時期に検証を実施する比較手法です。工程が少なく導入しやすいというメリットがありますが、比較するポイントを明確にし、他の要素を同一条件に保つ点に留意する必要があります。 時期の違いは問題? テスト対象が別の時期に実施されたものや、大きく異なる要素が含まれている場合、正しい比較が行えなくなるため、十分に注意しなければなりません。 品質会議の狙いは? また、品質管理や作業難易度に関するミーティングでは、参加者にアンケートを実施し、普段の作業の正確さや改善への意識について意見を集めることで、今後の品質管理ミーティングや改善提案に役立てることができると考えています。 学びをどう活かす? 今後は、A/Bテストを活用できるテーマとターゲットを決定し、本日の学びを実践していく予定です。仮説を立てることを前提とし、提案内容が部門方針に合致しているかを意識するとともに、ターゲットが大きく異なる複数の要素で構成されていないことを確認して進めていきます。

データ・アナリティクス入門

数値分析の極意を学び事業改善へ

分析とは何を指すのか? 目的を明確にしないと、意味のないただの計算・数値になってしまいます。「分析」とは「比較」であり、比較の条件をそろえることが大事です。分析は考察までがセットです。この点を理解することで、意味のある数値やグラフの種類を適切に判断できるようになると思いました。 データをどう活用する? 例えば、WEBサイトやSNSの効果測定では、数値が自動的に出てきますが、それをどう考察するかが重要です。また、アンケート結果の分析では、目的を整理してから項目や回答のさせ方を決めないと、分析できないデータや目的に合わないデータになってしまいます。 明確化の重要性 分析の目的・ゴールを明確化することを最重要視することが肝心です。目の前の数字の増減だけにとらわれず、分析手法やその後の考察までを意識してアンケート設計を行う必要があります。 学んだことをどう実践する? 業務上、数値分析をする機会が度々あるので、今後は学んだことを意識しながら分析手法や報告内容を改善していきたいと思います。

データ・アナリティクス入門

問題解決のプロセス細分化とA/Bテスト活用の魅力

問題解決の手法を学ぶ 今週は以下のことが学べました。 問題の原因を明らかにする方法として、プロセスを細分化する手法があります。解決策を検討する際には、複数の選択肢を洗い出し、それらの根拠を基に絞り込むことが重要です。また、A/Bテストについても学びました。これはシンプルで運用判断がしやすく、少ないリスクで改善ができるため、さまざまな場面で使用できると感じました。 A/Bテスト活用の予定 A/Bテストは10月に予定している実証実験でも活用する予定です。正しい検証結果を得るために、目的と仮説の明確化をチームで議論しようと思います。また、現状の問題を特定し、「what, where, why, how」の要素に分解して再考する計画です。 実証実験でのデータ取得設計 さらに、実証実験でどのようなデータを取得すべきかをもう一度考え直します。何が分かれば次のフェーズに進めるのかを踏まえた上で、データ取得設計を行います。アンケート設計も、目的を明確にして得たい情報が確実に得られるように構築します。

クリティカルシンキング入門

先ずは結論!スマートプレゼン術

ピラミッド構造は効果的? 上司に店舗改善案を報告する際や、店舗スタッフに会社で決定した事項を通達する際に、ピラミッド構造の考え方が役立つと実感しました。また、プライベートでは、面白い映画を友人に紹介する際に、この手法で論理的なプレゼンテーションを行えば、魅力がより伝わると感じています。どのシチュエーションでも、相手の貴重な時間をいただいて話すという意識を持つことが大切だと考えています。 結論を先に示す理由は? まず、頭の中で内容を整理し、重要な点を構造化することが必要です。特に、結論を先に示すことで、話の要点が明確になり、聞き手に伝わりやすくなります。これを実践するため、週一回の上司との面談前に、あらかじめピラミッド構造に基づいた準備を行い、指導を受けながらスキル向上を図る予定です。 自分の表現力向上は? さらに、メールを作成する際は、AIに頼らず自分の言葉で作成するよう努めます。また、週に一度、約400字の文章作成にも挑戦し、論理的な表現力を高めることを目指します。

「改善 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right