データ・アナリティクス入門

データ分析の極意と失敗しない一歩

ステップを踏む重要性は? ステップを踏むことと全体像を把握することは大切です。MECE(Mutually Exclusive, Collectively Exhaustive)の視点で全体を捉え、すぐに行動するのではなく、熟慮することが重要です。現状把握、原因分析、目標設定、そして打ち手の流れを理解する中で、特に現状把握が最も重要となります。多様な切り口から複数の要因を見つけ出し、そこから原因を確定することが求められます。例えば、QCサークルのような取り組みが有効です。そして、問題解決の目的が達成されたかどうかを検証することも忘れてはいけません。 問題解決のパターンとは? 問題解決には二つのパターンが存在します。一つはあるべき姿と現状のギャップを埋めるもので、もう一つは将来的な目標を現状と比較し、その余白を埋めるものです。後者は単に正常に戻すだけではないという点がポイントです。 原因分析の力量が成功を決める? 私自身、仕事の中で問題を解決する手法を使用していますが、事故対応策の相談や質問を受ける際、絡まり合った要因を考慮しながら原因を探り、対策を講じています。問題が単純に解決できる場合もありますが、連鎖的に解決される場合もあり、対応策が多岐にわたることがあります。原因分析の力量が重要であり、そのためには切り口の選び方が解決の度合いを大きく左右すると思います。 検証不足は問題を招く? 気になる点としては、要因分析から原因把握を行う際に、十分な検証を行わずにすぐに解決策に飛びついてしまうことが多く見られます。複数の解決策を列挙し、その中から重要度が高く、効果があるものを優先して対応することが肝心です。それでも上手くいかない場合には、PDCA(Plan-Do-Check-Act)サイクルを再検討することが必要です。

マーケティング入門

未来を拓く学びを体験して

商品のイメージ作りとは? 商品が売れるかどうかは、顧客がその商品に対してどのようなイメージを持つかによって大きく左右されます。そのため、商品の使用方法や効果を顧客に明確にイメージさせること、そして顧客の心理を理解することが重要です。 イノベーション普及の要件は? イノベーションの普及にはいくつかの要件があります。第一に、従来のアイデアや技術と比較しての優位性(比較優位)です。次に、生活の大きな変化を強要しないこと(適合性)、使い手にとってわかりやすく易しいこと(わかりやすさ)、実験的な使用が可能であること(試用可能性)、そして新しいアイデアや技術が採用されていることが周囲の人々から観察されやすいこと(可視性)です。 競合ばかりを意識しすぎていない? 年齢や性別のみでマーケットを判断するのは危険です。心理的な要素や行動面での変数、成長の可能性、競合商品についても考慮する必要があります。流行している商品と同じような商品を競合が出してくることで、顧客ではなく競合ばかりを意識してしまうことがあります。この「差別化の罠」に陥らないためにも、常に顧客目線を持つことが重要です。 プロモーションの目的を再考すべき? プロモーションを行う際には、商品が正しくイメージされるよう配慮し、イノベーションの普及要件と照らし合わせて確認することが求められます。また、プロモーションの目的が競合との差別化だけにならないように注意し、顧客ニーズに沿った商品・施策であるか、顧客からどのように見えるかを意識することが重要です。プロモーションが顧客にどのようなイメージを与えるか考察し、うまくいっていない商品の理由や改善策を考える際には、年齢や性別だけでなく、心理的および行動的な変数も考慮して市場を捉え、プロモーションに活かすことが重要です。

データ・アナリティクス入門

データ分析で実現する未来の可能性

比較の重要性とは? データ分析において、比較は極めて重要な要素です。要素を整理し、性質や構造を明確にすることで、なぜ「良い」あるいは「悪い」と判断されるのかを理解することができます。判断するためには、特定の基準や他の対象との比較が必要であり、比較を通じて初めてデータに意味が生まれます。 目標設定の重要性 分析には目的や仮説の明確な設定が不可欠です。分析の目的が曖昧であったり、途中でぶれてしまうと、都合の良いデータばかりを使う危険性が生じます。また、不要な分析に時間をかけてしまうリスクもあります。したがって、「何を得たいのか」という分析の目的と、それに必要なデータの範囲をしっかりと見極めることが必要です。 データの特性と可視化 データは質的データと量的データに分類され、さらにそれぞれ名義尺度・順序尺度または比例尺度・間隔尺度に分解できます。それぞれのデータの特徴を理解し、注意しながら扱うことが重要です。異なるデータを組み合わせることで、ひとつのデータだけでは見えてこなかった新しい情報を得ることが可能です。これらを効果的に可視化するために、グラフを利用しますが、グラフには適した見せ方があります。例えば、割合を示すには円グラフが、絶対値の大小を比較するには棒グラフが適しています。 新プロダクトの市場分析 現在、私は新しいプロダクトのリリースによって市場規模がどれだけ拡大するかについての分析を進めています。分析結果を基にした組織全体でのコンセンサス形成が不可欠であり、そのためには分析結果をわかりやすく可視化することが重要です。講義で学んだ内容をもとに、収集したデータをEXCELで整理し、グラフで可視化する予定です。どのデータをどのグラフで可視化するかは、講義の知識を活用しつつ、基準の設定も意識しながら判断しています。

クリティカルシンキング入門

アウトプットで魅せる!色とグラフの活用術

どの表現法が効果的? アウトプットの目的やメッセージを明確にすることが重要だと感じました。その上で、そのメッセージがより伝わるようにするためには、①グラフの視覚化、②色の効果、③フォント選び、④言葉選び、これらを駆使してブラッシュアップしていく必要があります。そのためには、「どのようなグラフを用いるか」「どの色やフォントを使うか」を理解し、それぞれの特性を活かして使い分けるスキルが求められます。 どのグラフが選ばれる? 特に、自分の場合は「どのグラフが最適か」をあまり意識してこなかったので、プレゼンが刺さる人のグラフの使い方をよく観察し、学びたいと思います。例えば、ある有名な経営者がグラフを多用せずに、訴えたい数字だけをスライドに載せるスタイルをとっていることに興味があります。聞き手や目的によって方法を変えているのかもしれません。 伝え方の意義は? また、WEEK2やWEEK3の学びが今週の内容とつながったことも印象的でした。最初は「クリティカルシンキングなのに、なぜ伝え方(アウトプット)を学ぶのだろう」と疑問に思いましたが、思考とアウトプットは脳内の整理とセットで、より的確な思考に繋げるために重要だと気づきました。 どの工夫で魅せる? 日々の業務では、色やフォント、文字サイズなど、簡単にできる工夫を反映していきます。特に社外へのプレゼンでは、今回学んだポイントをしっかりとチェックするためのリストを作成し、見直したいと思います。さらに、作成したチェックリストをチームにも共有し、活用してもらう予定です。また、自分一人では判断しきれない、訴えたいことの明確さやその根拠の強さを確認するために、他の人の目も借りて修正する習慣をつけたいです。まずは、自分が他のメンバーにチェックしてもらうことから始めていこうと思います。

クリティカルシンキング入門

新たな視点を引き出すセルフ問いかけ術

自問自答は何のため? 自分に質問し続けることが、もう1人の自分を生み出すと理解しました。これは世間で言う「メタ認知」です。1人で考えると偏りがちですが、自分に問いかけたり他者と会話したりすることで、その偏りを減らすことができます。 理解の分け方は? 分からないということは、考えを分けないままでいることから来ると気付きました。逆に、しっかりと分けることで理解が進みます。これを「MECE」と呼びます。 自問で何が変わる? 自分に問いかけることで、新たな視点や発見が得られます。たとえば、何かを相手に伝えたいと思ったとき、思考の偏りがないかセルフチェックを行うことができます。 どう整理?MECEとAIDMA また、MECEを活用した思考整理の具体的な例として、ある職場で車の販売を行っている状況を考えてみました。お客様にはさまざまな関心度があり、それぞれに適したアプローチを考えるために「AIDMA」というフレームワークを利用します。これにより、どの階層のお客様なのかを把握し、それに応じた行動を整理できます。 店舗課題はどう見直す? さらに店舗の課題を解決するには、来店数や店舗送客数の減少といった問題を分けて考える必要があります。このプロセスを通じて学んだことを活かせると感じています。 スキルアップはなぜ? 私個人のスキルアップについても、お客様との会話で分かりやすく筋の通った説明に活かせる場面が多いと考えました。また、自分が話した内容を振り返り、その説明や提案をもう1人の自分に問いかけて評価することが重要だと思います。店舗の課題に対しては、分けること、そして1人で考えるのではなく他者を巻き込むことが大切です。分けた内容に対して、1つ1つ目的を忘れず取り組むことが求められます。

クリティカルシンキング入門

試行錯誤が切り拓く学びの未来

本質をどう見極める? データ分析では、思い込みや決めつけを排除し、常にMECEの視点で多角的に検討することが基本です。入場者数の分析を通して、一つの要因だけでなく、他にも潜む原因が存在することを実感しました。また、すべての切り口を機械的に網羅するのではなく、目的に沿った仮説を立てながら実際に手を動かし、トライ&エラーを重ねるプロセスが非常に重要です。エラーは「失敗」と捉えるのではなく、「要因がなかった」と前向きに解釈することが大切です。 視点をどう広げる? データをグラフ化する際には、分解のレンジを変えることで新たな視点が見えてくるため、施策検討の方向性が変わる可能性に注意が必要です。また、報告の際は相手に何を伝えたいかを明確にし、その目的に合わせた見せ方を工夫することが、効率的かつ効果的なコミュニケーションにつながると感じました。 分析の深掘りは? 例年行っているプロジェクト業務の振り返りのためのアンケート分析においては、これまでの単なるデータ整理にとどまらず、本講座で習得したスキルを活用したいと考えています。過去の資料では、単なる数字の羅列に留まっていた部分が目立ちました。今回の学びをもとに、より深い考察と次回以降のプロジェクトに向けた提案や改善策の検討を進める予定です。 情報共有は進む? また、まず全体像を把握することを意識しながら、初期の段階で上位者へ超速報としてインプットを行い、今後実施する分析の切り口や方向性を共有したいと考えています。これにより、最終的な分析結果に対する手戻りを防ぎ、効率的な業務遂行が可能になると期待しています。さらに、今後は自分自身だけでなく、チームメンバーへの分析依頼にも対応できるよう、本講座で学んだ内容を基盤として、サポート体制の強化にも取り組んでいきたいと思います。

クリティカルシンキング入門

問いから始める:本質を見据えるチーム作りの秘訣

振り返りの重要性とは? 学んだ内容の7~8割が曖昧な記憶になってしまったことから、振り返りがとても重要であると感じました。そして、「問いは何か」を明確にすることの大切さを学び、その問いを常に意識し続けることの大切さも実感しました。問いをカタチとして残し、共有することで、組織全体が同じ方向を向いて課題を解決できるという学びがありました。 対話が思考を広げる理由は? 一人で考えるとどうしても思考に偏りが出やすいですが、誰かと対話をすることで様々な視点から考えることができることも感じました。 問いから始める重要性は? 利益構造が変化する昨今、成果に繋げるためには本質的な課題を見極める際に「問いから始める」ことを意識することが重要です。組織全体が同じ方向を向くために、会議などで問いを共有することが大切だと感じました。その際、視覚化を意識して資料を作成し、ズレや薄れを防ぐために問いを残し、定期的に進捗確認と調整を行うことも必要です。このような意識をもって行動することで、組織の成果をリードできると思います。 来期のPriority設定はどうする? 来期のチームのPriorityを作成する際には、「問いから始める」ことを意識し、チームの本質的課題を問いの形になるよう整理する予定です。さらに、会議で問いを共有するための資料を視覚的にわかりやすく作成し、その資料をプラン立案時や振り返りの際に確認することで、目的を見失わないようにします。 クリティカルシンキングを促すには? チームメンバーがクリティカルシンキングを身につけられるよう、相手の話を聴きながらイシューが特定できているか確認します。特定できていない場合には、本質的な課題に導けるような質問を投げかけ、「問いから始める」ことができるようサポートする予定です。

クリティカルシンキング入門

疑いが拓く学びの扉

本質をどう捉える? 本質的な課題を捉えるためには、まず目的を明確にすることが大切だと感じました。何のために、何を問うのか、その根底にある本質に迫ろうとする中で、当たり前と思い込んでいる事柄に疑いの視線を向けると、より本質に近づけるのではないかと思います。また、その問い方は単純な二者択一に終始せず、柔軟な姿勢を保つことが重要です。問いは一度限りではなく、何度も継続して行うべきで、その際、視点が偏らないよう多角的に分析し、具体的な実践を心がける必要があります。統計的なデータやその分析手法も、このプロセスにおいて有効なツールとなるでしょう。 本当の課題は何? 私はIT業界で働いており、この考え方は特に要件定義工程で役立つと感じています。本当にその機能が必要なのか、ユーザの真の課題は何か、また解決策がユーザ側の視点から見て適切かどうか、といった検証が必要な場面です。さらに、バグや障害対応においても、なぜ問題が発生したのか、どのタイミングで混入したのか、過去の事例と比較することで原因を追求する際に、このアプローチは有用です。開発プロセスの改善やリスク管理の分野でも、「今までのやり方が正しいのか」という疑念を持ち続け、常に振り返りながら改善を図る上で効果的だと考えます。 問いの立て方は? 「本質的な課題を捉える問いの立て方を身につける」ための行動計画としては、まずは疑いながら考える習慣をつけることから始めます。仮説を立て疑うことを日常に取り入れ、必要な理論や手法を書籍や研修を通して体系的に学びます。その後、実際の会議や小さなチームミーティングで本質的な問いを繰り返し投げかけ、意識を高めることを目指します。実践後は振り返りを行い、その結果を次回に活かすというサイクルを繰り返すことで、確実に身につけていけると考えています。

クリティカルシンキング入門

ビジネス成功の鍵は客観性とクリティカルシンキング

客観性を意識する重要性 ライブ授業で特に印象に残ったのは、ビジネスでは客観的な視点が欠かせないという点でした。これまではつい主観的に物事を考えてしまっていましたが、業務に取り組む際には客観性を念頭に置きたいと思います。 クリティカルシンキングの第一歩 また、クリティカルシンキングでは、すべてを最初から理解して実践するのではなく、日常の小さなことから実践していくしかないと感じました。これを意識しながら徐々にスキルを磨いていきたいです。 業務に取り組む際には、まず自分が主観的な観点で考えてしまう癖を認識することが大切です。そして、自分と他人が異なる考え方を持っていることを理解するよう心掛けています。 目的意識を持ったアウトプット さらに、目的を意識してアウトプットすることも重要です。たとえば、情報共有やメールを送る際にも、なぜそれを行うのかという目的を意識して取り組むようにしています。様々な立場の人たちと関わる中で、伝わりやすい方法を常に考えるよう努めています。 自分で考えて実践した業務については、手ごたえがあった内容やうまくいかなかった内容をメモに取るようにしています。なぜうまくいったのか、逆になぜうまくいかなかったのかを自己認識し、思考の癖を把握することが大切です。 意見を求める力とその価値 問題解決の際は、イシューを明確に捉え続けることを意識しています。イシュー自体が正しいかどうかは自分一人では判断が難しいこともあるため、周囲のチームメンバーや営業に意見を求めるのを厭わないようにしています。 どのような場合でも誰が相手でも、わかりやすい文章を書くことを心掛けています。「これは省いても伝わるだろう」とは考えず、必ず一度読み直して、読み手が理解しやすいか確認することを忘れないようにしています。

データ・アナリティクス入門

データの見方が変わる!定量分析の魔法

定量分析の視点をどう活用する? 定量分析の5つの視点(1. インパクト、2. ギャップ、3. トレンド、4. ばらつき、5. パターン)を学びました。データを漫然と眺めるのではなく、これらの視点で見ることで効率的に示唆を得られると感じました。特に、平均値を取る際に「標準偏差(データのばらつき度合)」という視点をこれまで考えたことがありませんでした。同じ平均値でも「ばらつきがある」か「ばらつきがない」かでデータの意味合いが変わります。今後は標準偏差も併せてチェックしていきたいと思います。 データ比較時のポイントは? 売上やサービス利用者数などのデータを前年度と比較する際には、定量分析の5つの視点を意識して数字を見るように心がけます。また、特定月における新規受講者や解約者を年代別に分析する際、これまで表に落とし込むことは行っていたものの、グラフ作成は少なかったです。今後はヒストグラムなどのグラフを活用し、ビジュアルで傾向を把握できるようにしたいと思います。これはチームメンバーにも促していきたいです。 チームでの視点共有は? まずは、学んだことを言語化し、チームメンバーと共有することが重要です。データの分析もチームメンバーと一緒に行う際、「Aさんはトレンドがないか」「Bさんはばらつきがないか」といった具合に、各メンバーに特定の視点で見る役割を依頼するのも良い考えだと思います。これにより、チーム全体として5つの視点を網羅することができます。 グラフ化で何を検証する? 最後に、各月のサービス利用者の新規受講率や解約率のデータが表として存在していますが、まずは先月のものを目的に応じてグラフ化し、理解の速度や深度にどのような違いがあるのか、グラフから意味ある示唆を導き出しやすくなるのかを検証したいと思います。

データ・アナリティクス入門

データ分析でビジネスの未来を予測する方法

分析の目的と手順は? 分析は、比較(増減や時系列の変化、数字の意味)と何を明らかにするかの仮説が重要です。仮説を立てる際には、逆算思考で分析結果の見せ方や投入時間などを考慮します。課題解決のプロセスでは、自己の中でプロセスを明確にし、目的や狙い、コンセプトを先に確立することが大切です。その後、問題を特定し、どこに問題があるのか、なぜその問題が発生したのかを明らかにした上で、どのように解決するかを考えます。 データ分析で課題をどう解決する? ビジネスにおいてデータ分析を行う際には、まず現状と理想のギャップを見つける問題発見力や課題形成力を磨く必要があります。そして、課題解決の仮説を立て、自由な発想と未来からの逆算を用います。次に、客観性を備えたデータ収集を行い、そのデータを加工し、考察と未来への洞察力を磨きます。 新しい取り組みへの挑戦 漠然と総花的な活動に陥りがちで、あれもこれもと欲張ってしまうことが課題です。採用戦略や事業計画策定の際には、採用市場データの分析スキルを評価することが求められます。定性と定量の分析をビジュアル化し、仮説を持ってデータ収集と分析、考察を効率化します。毎年の活動には、新しい取り組みに挑戦することが求められます。最新情報へのアクセスや情報分析から、課題解決策の提案力を高めて引き継ぎます。 ロジックツリーで何が見える? ロジックツリーを用いて、課題(大学・高専との関係強化構築)や採用市場の傾向(少子化・18歳人口の激減、高学歴化・編入進学、高度人材の活躍など)を整理し、それらを明確化、細分化します。これにより、人材獲得のチャンスを検討します。実践を通じて学んだことを自分の活きた知識とするとともに、書籍や研修を通じて知識をアップデートし、実践能力の向上に努めたいです。

リーダーシップ・キャリアビジョン入門

自主性を育む問いかけの魔法

目標設定のポイントとは? 「目標設定への本人の参加を促す問いかけ」については、組織の課題に対して自分の持ち場でできることを考えるよう問い続けることが重要です。特に、日頃の問題意識やアイデアを積極的に引き出すことが求められます。これまで無意識に行えていたこともあるが、今後はより意識的に問いかけを行い、自主性を高めたいと考えています。 ストレッチ・ゾーンの活用法? 「相応しいレベルの挑戦」については、コンフォート・ゾーン、ストレッチ・ゾーン、パニック・ゾーンの理解が鍵となります。部下の能力や意欲に応じて、ストレッチ・ゾーンの目標を設定することで効果が最大化されることに注目しています。リーダーとしての声かけが影響するため、各ゾーンの見極めと本人の意欲を考慮することが大切です。 どんな問いかけが必要か? 部下AとBに対しては、問いかけを意識し、特に日頃の問題意識やアイデアの掘り下げに注力したいと考えています。私自身が意見を先に言ってしまわないように、傾聴の姿勢を強化し、双方向のコミュニケーションを促進することを心掛けます。その効果として、課題発見力と自主性の向上が期待できます。 6W2Hの具体的な活用は? 具体的な目標設定には、講義で学んだ「6W2H」(目的、人物、期限、内容、受け手、方法、リスクと対策、コスト)を活用します。これにより、目標達成に向けた道筋を具体的に描き出し、「できる」イメージを持つことが可能となります。本人に考えさせつつ、一人にはせずに一緒に考えることで、より効果的な目標設定を目指します。 日常で目標につなげるには? 最後に、問いかけの際は傾聴の意識を高め、日常的な場面で気づいた際に声かけを行うことで、より自然なコミュニケーションと目標設定につなげたいと考えています。

「目的」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right