データ・アナリティクス入門

仮説思考で切り拓く成長への道

仮説検証はどう進む? 問題解決に取り組むためには、複数の仮説を立て、それぞれを短いスパンで検証することが大切です。仮説設定の際には、3Cや4Pといったフレームワークを活用することで、より多角的かつ論理的にアプローチできると感じました。 固執をどう克服する? 私自身の業務では、課題に直面すると日々の経験に左右され、一つの可能性に固執してしまう傾向がありました。仮説はあくまで出発点であるため、複数の視点から検討する姿勢が重要だと学びました。今後は、対策を立案する前に一度立ち止まり、慎重に仮説を設定することで、論理の偏りや抜けを防ぎ、より精度の高い対策に結びつけたいと思います。 書き出す仮説の意義は? また、分析の材料となるデータ収集に先立ち、まずは課題に対する仮説を書き出すことが基本であると感じました。3Pや4Cのフレームワークを利用し、俯瞰的に課題を捉えることで、決めつけに陥らずに検証・結果のプロセスを慎重に実行する姿勢が大切だと再認識しました。

デザイン思考入門

予期せぬ挑戦で深まる学び

経営層とのズレは? 総務の分野では、明確なゴールや課題意識が設定された状態で業務が依頼されることが多く、経営層と現場の考え方のズレを常に意識しながら問題解決に取り組む重要性を感じました。経営側が示すのは課題定義までであるため、実際に試作品を作る過程で予期せぬ問題が発生することを体験し、学びが深まりました。 AIデザインはどう? 生成AIを活用してデザインを作成する試みは、予想以上に難しいと感じました。自分のイメージを正確に反映させるためには、プロンプトの使い方をさらに工夫していく必要があると感じています。また、思いもよらない結果が得られることもあり、試行回数を意識することが大切だと思いました。 試作の修正ポイントは? 加えて、生成AIの利用はもっと意識的な操作が求められる点、試作後に自ら修正箇所を見出す経験が得られる点、そしてデザイン思考入門で学んだ手法が、自分の予想を超える、または改善された成果を生み出す可能性があることを実感しました。

データ・アナリティクス入門

数字で読み解く成長の軌跡

定量分析の鍵は? サンクコスト、定量分析、MECE、ロジックツリーという手法について学びました。定量分析では、データのどこに注目し、どこを比較するかが重要であることが分かりました。特に、①インパクト、②ギャップ、③トレンド、④バラつき、⑤パターンの各視点からデータの意味合いを読み取ることに注力しました。 MECEの意味は? また、MECEに関しては「もれなく、ダブリなく」に分けるだけでなく、意味のある切り分け方が重要であることを理解しました。この考え方を基に、現状と理想のギャップを明確にし、具体的な行動につながる方向性をメンバーに示すことが求められると感じました。 課題解決の道は? さらに、現状の課題として、分析結果の共有時にメンバー間で理解のずれが生じたり、行動に直結しない点が挙げられます。なぜこのような分析が必要なのか、そこから得るべきものは何か、そして課題の解決につながる具体的な実施方法について、今後さらに明確にしていく必要があると感じました。

データ・アナリティクス入門

仮説とデータで切り拓く未来

データ分析で何を学ぶ? 今週は、データ分析による業務課題の可視化や、仮説構築から分解・深掘り、施策立案に至る一連の流れを体系的に学びました。全体平均だけでは見えないグループごとの傾向把握の重要性や、セグメント別分析を通じてボトルネックやインサイトを抽出するプロセスが特に印象に残りました。具体的なケーススタディを通して、満足度や成果指標を分解することで課題の本質に迫るアプローチを体験できたことは非常に有意義でした。 営業分析をどう活かす? また、今回学んだ分析プロセスや分解思考は、自身の業務、特に営業活動にも応用可能だと感じました。たとえば、営業メンバーの訪問件数や提案内容、業界別の成約率、失注理由などのデータを収集・分解し、チームや個人、顧客属性ごとに傾向を分析することで、属人的な営業から再現性の高いプロセス型営業への転換が期待できます。さらに、成績上位者の営業プロセスを可視化してナレッジを共有することで、組織全体のレベルアップに貢献できると考えています。

データ・アナリティクス入門

目的と仮説で切り拓く新世界

なぜ比較が大切? 今回の授業で改めて学んだのは、「分析は比較なり」という考え方と、目的や仮説を持って取り組む姿勢の重要性です。データ分析の根幹となるこの考え方は、今後の講義や業務の現場で常に意識して取り入れるべきだと感じました。 意見交換で何を得る? また、授業中にパソコンを購入する際の調査項目や、自身が望む条件について話し合った際、他の受講生の様々なアイデアが非常に参考になりました。この経験から、自分の考えに固執せず、複数の視点から意見交換を行うことのメリットを実感しました。 業務で分析のコツは? さらに、データ分析の考え方は業務においても広く応用できると考えています。例えば、ある業務プロセスにおいて不具合の解決を目的としてデータやプロセスを分析する際、目的や仮説を明確にすることが問題解決への近道になると感じています。 普段からデータ分析に携わっている方には、業務で分析を進める中で直面する課題や、その解決方法についてぜひお伺いしたいと思います。

クリティカルシンキング入門

イシューの重要性を理解し、プロジェクトを成功に導くポイント

イシューを考えていますか? 課題解決の手法を学ぶだけでなく、そもそもの課題である「イシュー」を考えることの重要性を学びました。特にチームで取り組む場合、イシューについての共通認識がないと、話がどんどん発散してしまうことが多いです。 プロジェクトの目的は明確? プロジェクトをまとめたり、ミーティングのファシリテーションをする際にもイシューを明確にすることが大切です。何のためのプロジェクトか、何を決めるためのミーティングかをしっかり把握することで、議論が散漫になるのを防ぐことができます。自由に議論しながらも、このポイントを押さえることが効果的です。 長期プロジェクトで大切なのは? 特に長期のプロジェクトにおいては、問いを常に意識することが最も重要だと考えます。「そういえば何のプロジェクトだっけ?」とならないように、プロジェクトのミーティングでは前回のミーティングで決めたことをおさらいする前に、まず問いの確認から始めることを取り入れてみようと思います。

リーダーシップ・キャリアビジョン入門

チーム輝かすエンパワメント力

権限移譲の秘訣は? エンパワメントでは、権限移譲とメンバーのやる気の維持を両面から考えることが大切だと改めて感じました。成果の向上とメンバーの育成を両立するために、各人の業務経験や知識、意欲、さらには時間的な余裕を十分に理解し、どこまで委譲するかを明確にする必要があると感じています。目標設定や計画の立案に際しては、6W1Hを具体的に示すことで、より実行可能なプランへと落とし込むことができると思います。 話しやすい雰囲気は? また、エンパワメントのプロセスを円滑に進めるためには、自分自身に余裕を持ち、相手にとって話しやすい雰囲気を整えることも重要です。目標や進捗の管理に関しては、理解が不十分な点や不安な部分があれば丁寧に説明し、それらの課題を引き出したうえで意義や目的を共有することが、結果として相手のモチベーションを高める効果があると考えています。毎週の1オン1ミーティングでこれらを確認する習慣も、エンパワメントを成功に導く一つの工夫だと思います。

戦略思考入門

差別化の壁を乗り越えるヒント

模倣リスクはどう考える? ポーター論におけるコスト戦略、差別化戦略、集中戦略の中で、特に差別化戦略は実際に実践する際の難易度の高さを実感しました。どれほど他社に真似されにくい戦略を立案しても、現実には数年以内に模倣されてしまう事例を目の当たりにしています。VRIO分析で模倣困難性があったとしても、社内でその戦略の理解が進まなかったり、新制度の浸透に時間がかかると、効果が半減してしまうのではないかと考え、さまざまな視点をバランスよく取り入れることの重要性を痛感しました。 採用戦略の課題は? また、自分が担当している採用プロジェクトでは、募集エリアが非常にニッチなため、応募が思うように集まらない状況です。これまで同じ職種で競合と戦略を立ててきましたが、今回、従来とは異なる職種、つまり、異業種の中での差別化戦略を検討し、母集団の形成を目指すことも一つの手段ではないかと感じています。そのため、現職から転職してきた方々の分析を進める必要があると考えています。

データ・アナリティクス入門

仮説で描く未来の戦略図

仮説整理はどう進む? ビジネスフレームワーク(3C、4Pなど)を活用することで、なんとなくで仮説を立てるのではなく、複数の仮説をMECEに整理できるという認識が得られました。また、仮説には「結論の仮説」と「問題解決の仮説」の2種類があることを知り、仮説に対する考え方が大きく変わったと感じています。 課題解決は何を問う? マーケティング施策の企画段階では、まずお客様の課題が何であるかを明確にし、What、Where、Why、Howのプロセスに基づいた問題解決の仮説思考を用いることで、心に響く施策を考案したいと考えています。一方、振り返りの際には、施策の結果を踏まえた上で結論の仮説を用い、データを検証していくことが重要だと感じました。 計画実行はどう見る? 今年度の施策の振り返りと来年度の計画を進める時期にあたり、初めからデータを集計するのではなく、まず仮説を立て、その検証に必要なデータを収集・比較分析するアプローチを取り入れていきたいと思います。

データ・アナリティクス入門

A/Bテストで成果を見える化!

真因はどこにある? プロセスを分解し、問題がどこにあるのか、さらにその真因を掘り下げるアプローチは非常に重要です。このような手法により、具体的な対策が見えてきます。特に、A/Bテストを用いた評価方法は、複数の施策を公平に比較するために有効です。ランダム性を持たせつつ、できるだけ条件を同じにして施策をリリースし、実際の結果を基に評価することが求められます。 課題はどう捉える? 実際の業務では、A/Bテストを行う機会は少ないかもしれませんが、顧客の課題をプロセスに分解し、その真因を探りながら仮説を立てることは、多くの場面で有効です。このような手法で、顧客の表層的な課題だけでなく、プロセスの詳細まで深く掘り下げることが大切です。 データは信頼できる? そのためのヒアリングやディスカバーを繰り返すことで、有意義なデータを収集し、場合によっては実地での業務サーベイを行うことも検討します。これにより、定量的なメリットの根拠を構築することが可能になります。

クリティカルシンキング入門

データ分解で未来を切り拓く学び

データ分解のコツは? データを分析するときには、まず分解することの重要性を学びました。物事を分解する際には、次の三つのポイントが大切です。まずは手を動かすこと、機会的に分けないこと、そして複数の切り口で分けることです。また、MECEとは「もれなく、ダブりなく」切り分けられた状態を指します。分解の切り口には、層別分解、変数分解、プロセス分解があります。 売上数値の見方は? 自社製品の売上状況や他の薬剤の売上状況を記載した月毎のデータを用いることで、今後のアクションを検討する際に役立てたいと考えています。ただ単に数字の流れを追うのではなく、データを複数の切り口で分解することで課題を抽出します。 施設売上の課題は? 施設の売上状況を基に課題を探り、今後の行動を検討する際にこれを活用したいと考えています。従来の月毎の売上やシェアだけでなく、同種同効薬や関連薬剤のデータも収集し、季節別や医師の特徴(年齢や出身大学)、地域別などにデータを分解してみます。

リーダーシップ・キャリアビジョン入門

問いかけの力でチームを活性化!

聞くためのプロセスとは? 聞くためのステップを明確にしておくことが大切だと思いました。何となく聞くのではなく、コーチングプロセスのように「理想は何か」「現状は何か」「GAPは何か」「GAPを引き起こしている要因は何か」「改善策は何が考えられるのか」を意識して聞くことが重要です。 具体的な質問テクニックは? まず、Whatとして「何が問題だったのか」「課題だったのか」をメンバーの意見を聞いてみます。次に、Whereとして「どこに問題があったと思うか」を尋ねます。さらに、Whyとして「何が成功要因」「失敗の原因だったと思うか」を聞いてみます。そして、Howとして成功要因を継続するために何ができるとよいか、失敗の原因を改善するために何が必要かを問いかけます。最後に、「いつから何を着手するか」「いつまでに何ができていると順調か」を確認します。 継続的な対話の実践法 これらのステップを紙に書いてパソコンに貼っておき、1対1の対話の際に活用していきます。

「重要 × 課題」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right