クリティカルシンキング入門

多角的な視点で本質を探る思考法

フレームワークは有効? 5W1Hといったフレームワークを活用することで、モレやダブりを防ぎながら、迅速に考えをまとめることができると感じています。また、物事を複数の切り口から分解してみると、表面的には見えなかった本質が見えてくることがあります。一度や二度の分解で結論を出すのではなく、「本当にそうか?」と批判的思考を持ちつつ、別の視点を探ることを心がけたいと思います。 具体例はどう分析? 具体的な活用例としては、アンケート集計結果の分析があります。例えば、性別や年代別、地域別に分解し、さらにクロス集計することで、表面上では分からなかったデータの特徴を発見する可能性があります。また、企業審査における決算書分析でも有用です。売上の増減要因を確認する際に変数分解を行い、事業者の申出内容との整合性を判断することができます。もし整合性がない場合は、事業者が気づいていない点を指摘し、経営アドバイスを行うことができるでしょう。 どう切り口を見出す? 私の役割として、部下が行うアンケート集計の分析結果をレビューする立場にあるため、「別の切り口はないか」という視点を大切にしています。また、別の切り口を見つけた場合、そのことを指摘するだけでなく、分解の必要性やその切り口を採用した理由もきちんと伝えるように心がけています。

戦略思考入門

戦略思考で未来を切り拓く秘訣

戦略思考を深掘りするには? 戦略思考について改めて考えてみました。具体的なフレームワークを用いて書き出してはいないのですが、一部については無意識に頭の中で実行していたようです。ですが、文字に起こすことにより、自分の理解を深め、より具体的な形にすることができました。 進捗確認のポイントは? 新規プロジェクトの立案だけでなく、進捗の確認の際にも、「ゴール確認→環境分析→捨てる勇気」といったプロセスを繰り返すことで、効率的かつ効果的な結果を得られると感じます。さらに、最新の動向に基づいた分析が必要だと考えています。マニュアルや慣習に依存しがちな面があるため、それにも注意を払いたいです。 自分の言葉は合ってる? また、他人の話を聞いてわかった気になるのではなく、自分の言葉でアウトプットすることも重要です。目標設定だけでなく、その目標に至る過程、特に「捨てられるものはないか」を意識することが肝心です。慣例的に行っていることが本当に必要なのか、利益が停滞していないか、しっかりと精査する必要があります。 変化にどう対応する? さらに、時代の流れを敏感に捉え、情報収集を怠らないようにし、過去の成功体験に囚われない姿勢が重要です。自社や自分の強みを振り返り、差別化を意識し続けることが求められます。

戦略思考入門

VRIO分析で見つける新たな視点と価値

VRIO分析で競争優位をどう築く? VRIO分析は、差別化のポイントを見つけるフレームワークとして有効です。この分析は以下の4つの視点から施策を評価します。 - 経済価値(Value):顧客にとって価値があるか。 - 希少性(Rarity):その要素がどれだけ希少か。 - 模倣困難性(Imitability):模倣するためのコストが高いか。 - 組織(Organization):組織体制が適切に整備されているか。 経済価値を再考する方法 自社が保有する優れた経営資源を明確にすると、競争優位性を構築できる組み合わせを考えることが重要だと学びました。 経済価値について考えることで、私は自身の業務に対して新たな視点を持つことができました。課題に集中するあまり、本当に求められているものを見落としがちになります。これを機に、顧客のニーズをより把握することを再検討したいと考えています。具体的には、どのようなコンテンツが求められているかアンケートを実施し、施策の妥当性を確認します。 SNS活用とアンケートの重要性 広報活動においては、今後SNSなどを活用してアンケートをとり、求められているコンテンツが何かを明らかにします。得た回答から経済価値を見つけ出し、実現可能なものを具体化して広報活動に活かしていく予定です。

データ・アナリティクス入門

ギャップを埋める数字の魔法

何が問題なの? 問題解決に取り組む際、まずは「何が問題か」「どこで問題が発生しているか」「なぜその問題が生じたのか」といった基本的なステップを意識することの大切さを実感しました。特に、課題と目指す姿とのギャップを数値で示すことで、頭の中で漠然と把握しているだけでなく、実際にどれほどの差があるかを具体的に明らかにできる点に強く共感しています。この手法は、他者に説明する際にも説得力があり、問題の重要性を再確認する良い手段だと感じました。また、従来の「あるべき姿」と現状のギャップだけでなく、未来の「ありたい姿」との比較にも目を向け、より具体的な分析とアクションに結び付けていきたいと思います。 分析の新たな視点は? 日々のビジネス分析においては、客数や単価のどちらに課題が潜んでいるのかを正確に把握することが重要です。これまで、パターン化された切り口での分析に偏りがあったため、異なる視点からの分析の必要性を感じるようになりました。また、分析手法としては、層別分解や変数分解を意識したMECEの考え方を活用し、情報の抜けや重複がないかを継続的に確認することが不可欠です。今後は、定性・定量の両面から「あるべき姿」を具体的に数値化し、現状とのギャップを明確にすることで、より効果的な課題解決に取り組んでいきたいと考えています。

データ・アナリティクス入門

比較で見える新たな視点

比較方法はどう決める? 分析の基本は比較にあります。分析対象をただ単に見るのではなく、相違点や類似点を明確にするため、対比できる条件を設定しながら進めることが重要です。 数値の意味はどう捉える? 定量分析を行う際は、単に数値の平均値や個数を求めるだけではなく、その背後にある意味を捉えることが求められます。例えば、男女のデータ分析においては、単位に数値を割り当てた場合の平均値そのものに意味はなく、それぞれのグループの人数や全体に占める割合を把握することで、ターゲットや戦略を導く上で有効な情報が得られます。 グラフの選び方はどうする? また、データの視覚化は、分析結果を他者と共有する際に非常に有効です。グラフを用いることで、複雑な情報も整理され一目でわかるようになりますが、データの特性に応じた適切なグラフ形式を選ぶことが大切です。 仮説設定をどう見る? さらに、分析においては、目的や仮説を明確にしてから着手する姿勢が重要です。分析する際は、比較対象となる条件を十分に整え、個々のデータに対してどの指標(個数、平均値、標準偏差など)を用いるかを慎重に検討することが必要です。自分が伝えたいメッセージと、相手がどの程度の情報を理解できるかを意識しながら、適切なグラフや表現方法を選ぶことも忘れてはなりません。

データ・アナリティクス入門

データ分析に固執しない学びの本質

効果検証を改善するには? 今週の講義内容は、すでに実践していることをさらにブラッシュアップして継続する必要があると感じました。特に効果検証については、ノイズを排除しきれずにABテスト自体が難しい場合や、施策の実施数が多く、全ての分析を物理的に行うことが困難な場合があります。 デジタル時代のデータ分析とは? デジタル領域では、質よりもスピードが重要な場面が多くありますので、完璧なデータ分析に固執しすぎないことも心掛けたいです。データ分析はあくまで結果を出すための一つの手段に過ぎず、それ自体を目的としないことが大切だと再認識しました。 仮説思考を磨くために何が必要か? また、仮説思考を鍛えるためには、思考力を磨くことが最も重要だと感じました。情報を集めたり事象を分析しているだけでは、思考の精度は上がりません。本当に必要な情報を見極めるために、何のために情報を集めるのかを自分の頭で考えるトレーニングが必要です。 行動で成果を生み出す方法は? さらに、答えを持っている人に対して自分の仮説を試してみることも大事です。不正解でも良いので、アウトプットする機会を増やし、トライアンドエラーを繰り返すことが重要です。成果は行動することでしか生み出せないため、とにかく積極的にアクションを起こすことが求められます。

クリティカルシンキング入門

数字の裏側へ一歩踏み出す

分析の丁寧さは? 教材の事例を通して、分析の丁寧さがいかに現状把握に直結するかを痛感しました。細かな分析を怠ると、本来のイシューを見誤ってしまい、解決策も誤ったものになってしまう可能性があると理解しました。また、施策のタイミングが効果に大きく影響するため、現状分析に再度立ち戻る重要性を感じました。提示された数字から更に見えにくい指標を導きだし、その裏に隠れた課題を発見することも大切だと学びました。 数字は何を語る? 数字を分解し、それぞれの数値が持つメッセージや背景を考える作業は、普段あまり扱わない分野であったため難しさを感じました。しかし、新聞やニュースで見かける数字を自分なりに解釈し、分析することができるのではないかという自信にもつながりました。さらに、グラフの種類や見せ方の工夫の大切さについても演習を通して再認識しました。 数字に慣れるコツは? とにかく、数字に慣れ、しっかりとした分析を行うことが重要だと感じました。苦手意識にとらわれず、興味のある分野から取り組んでいくことで、数字を楽しむことができるのではないかと思います。ビジネスの現場では、感覚的な判断ではなく、数字を用いて現状を明確に把握し分析することが必須だと改めて実感し、この講座を受講した初心を取り戻す良い機会となりました。

データ・アナリティクス入門

具体例で感じる数値分析の魅力

精緻な数値はなぜ? データの数値が精緻であることの重要性について、具体例を通じてしっかりと学ぶことができました。ただ単に平均値を算出するのではなく、その数値が持つ意味や背景を理解することが、正確な分析と意思決定に直結する点が印象的でした。 目的分解は本当に必要? また、目的を明確にした上でデータを要素に分解し、具体的な項目ごとに比較することが不可欠であると実感しました。単一の指標だけでは十分な判断材料とはならず、複数の視点からデータを総合的に見直すことで、初めて意味ある洞察が得られると理解しました。 比較手法には何が効く? さらに、PC購入の事例などから、データの比較が意思決定において大きな役割を果たすという点が強調されました。これを踏まえ、自身の業務に直結する営業データの分析―受注数、流入経路、企業特性、自社取引実績、月ごとのニーズや競合の状況など―を、目的に沿ってExcelで整理しながら分析する手法が非常に有用だと感じました。 多角的意見交換はどう? グループワークでは、異なる業界や職種の仲間と意見交換を行うことで、多くの刺激を受けることができました。多様な視点に触れることで、自分の分析方法や業務運営に対する考え方に新たな気づきを得ることができ、非常に有意義な学びの場となりました。

データ・アナリティクス入門

仮説で突き抜ける分析の世界

分析の基本を確認? この講座では、分析とは単にデータをそのまま受け入れるのではなく、要素を分類し比較する作業であることを学びました。現状を鵜呑みにするのではなく、多角的に考え、目的や仮説を明確に持って取り組む重要性が印象に残りました。 分類と比較の仕方は? 具体的には、まず分析の基本として、データを分類することが必要だと再認識しました。そして、その分類された情報を比較することで、より深い理解が得られると感じました。さらに、明確な目的や仮説を持つことで、分析の取り組み方が一層意識的になり、有益な示唆が得られる可能性が高まると実感しました。 実務での分析戦略は? また、現職の業務においては、クライアント向けのマーケティング戦略を立案する際、膨大なデータの中から適切な視点を見出し、効果的な分析を行うことが求められます。目的や仮説を明確に持ちながら、意識的な比較検証を進めていくことで、売上に貢献できるような分析手法を確立していきたいと考えています。 着眼点を模索中? さらに、与えられたデータのどの部分に着目すべきか、どの分析手法を適用すべきかについては、まだ模索している部分もあります。今後は、理論を学びながら実務に直結する知識やスキルを身につけ、より具体的な分析ができるよう努力していきたいと思います。

データ・アナリティクス入門

データ分析で見つけた成功への鍵

分析の基本は比較にあり? 「分析とは比較である」ということが、今まで感覚的に行っていた私にとって、必須であると改めて理解しました。また、多くの人の前でプレゼンテーションを行うため、データを分析する際には、まず「仮説」を構築した上でデータ加工に取り組んでいました。そのため、明確な目的や主張のない分析は行っていませんでしたが、一方で期待していた比較結果が得られなかった場合には、仮説を素直に見直すことの重要性を認識しました。 新しい業務への挑戦 普段の業務では、「分析とは比較である」という意識が習慣化しています。しかし、これから新しい業務に挑むにあたっても、この「比較」を意識し続けたいと考えています。特に、生存者バイアスのかかったデータに基づく業務になる可能性があるため、失われているデータとの比較を心がけたいと考えています。 成功と失敗事例の見極め あるプロジェクトでは協力業者の選定が多数必要となりますが、彼らが持参するのは成功事例が多いと予想されます。そのため、成功事例の裏に隠れている失敗事例を手に入れ、成功事例だけに基づいた「比較」に陥らないよう注意したいと思っています。直感的に考えたことを「仮説」とし、その後、生存者バイアスを避けた適切なデータを比較・分析し、プロジェクトの成功を目指したいと考えます。

データ・アナリティクス入門

業務に役立つ分析スキルを身につける方法

予測を立てる重要性は? グラフなどの資料を見る際、自分なりの予測を立て、仮説を立てて実態との違いを確認することは重要です。このプロセスでは、仮説の誤りをマイナスに捉えず、新たな課題や問題に気づく機会として扱うことが求められます。 分析のサイクルをどう回す? 分析の基本である「目的・仮説・データ収集・仮説検証」のサイクルを回すことについては、業務で分析を行う際に疎かになっていたと反省しました。数字に集約した分析を学ぶなかで、代表値(単純平均、加重平均、幾何平均、中央値)や散らばり(標準偏差)のそれぞれが適した状況で使い分けることが重要であると再認識しました。 患者数低下の原因とは? 紹介患者数の低下対策を立案する際、まず分析のプロセスをしっかりと踏むことが大切です。特に目的を明確にすることで、求めたい結果を得るためのポイントとなります。次に、どの視点で分析を進めるかを判断し、グラフや数字を用いて実行していきます。 具体的には、紹介患者数低下の分析では、近隣医療機関からの紹介の減少が課題(目的・問い)となります。減少の要因について仮説を立て、その後、取るべき分析の視点(インパクト・ギャップ・トレンド等)を考慮してデータを収集し、グラフ化・数値化します。最後に、分析結果と仮説を検証し、対策を立案します。

データ・アナリティクス入門

ゼロから始める客観分析術

どの分析方法が有効? 問題を特定する際のアプローチについて、分類や分解の手法、考え方の基本を身につけることで、さまざまな課題に対してゼロから悩むことなく、正しい分析を進められると実感しました。学習の中ではプロセスの分解に重点を置いていましたが、他の方法についても幅広く覚えておきたいと考えています。 提案の見直しは必要? 実業務においては、顧客への提案で解決策ありきで進めてしまうケースがあり、都合の良い分析になってしまうことがあります。こうした提案は初めは良い印象を与えるかもしれませんが、本質的な課題解決にはつながらず、長期的には評価を下げるリスクがあるため、業務の進め方を見直す必要があると感じました。まずは、これまで学んだ分析のステップに基づき、客観的かつ正確な分析を実行した上で、最適な解決策を提案することが重要だと思います。 行動計画はどう決める? 具体的な行動としては、実業務で特定のサービスに依存せず、客観的で正確なデータ分析を徹底し、複数の選択肢を比較検討することが求められます。そして、適切な判断基準を設定して最適な解決策を提案することを意識します。加えて、提案後の振り返りを行い、実施した解決策の効果をデータで検証する仕組みを整えることで、継続的に提案の機会を創出できると考えています。
AIコーチング導線バナー

「分析 × 本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right