クリティカルシンキング入門

分析の視点で新たな発見を振り返る

分析における多角的視点の必要性 データの分類や分析において、偏りのないように複数の切り口を考えることの重要性を感じました。そして、そこから生まれたインサイトが本当に正しいのか、網羅的に考えられているかを見極める必要もあると理解しました。これは実務でも同様で、仮説に基づいて行動する際、その仮説が正しいかどうか、考えに漏れがないかを確認することが非常に大切だと思います。自身の業務に限らず、さまざまな業界の分析を行う際にも、抜け漏れがないように、その都度確認する必要があると感じました。 データ再分類のアプローチは? また、異なるプロジェクトにおいても、共通点やどのように分類できるかを常に言語化するスキルを身につけたいと考えています。過去のアウトプットに関しても、新たな切り口でデータを再分類できないかを模索し、再検討とアップデートを続けていきたいと思っています。

データ・アナリティクス入門

小さな実験で見えた業務改善

A/B分析はどう見る? A/B分析の手法について理解が深まりました。分析時の基本として、環境要素を一致させることや、複数パターンの場合には確認したい要素を絞り込むなど、判定材料の吟味が重要であると感じました。ただし、効果や判定は比較的しやすい印象を受けています。 UI選択はどうする? 現在、課内の業務案内掲示板の改修を進めており、どちらのUIが確認しやすいか、また問い合わせ件数が減少するかを試す計画です。ただし、使用するツールが決まっているため、パターンが限定される点と、同時に開示できないジレンマを感じています。 引継ぎはどう進める? 明日から業務引き継ぎ用のマニュアル作成が始まるため、まずは小規模かつ迷惑のかからないメンバーでトライアルを実施します。迅速に変更できる体制を整えることで、双方の良い点と不得意な点の判定を容易にすることが狙いです。

データ・アナリティクス入門

受講生が実感する学びの変革

目標はどう意味づけ? 目標設定は、データ分析のみならず、学び全般にとっても非常に重要だと再認識しました。受講前に描いていた理想像よりも、学びを終えた今の自分は実践できることが増え、単なる分析のプロから、ビジネス現場で分析手法を効果的に活用するプロへと成長できたと感じます。 活かし方はどうして? この学びは、日常のあらゆる業務に活かしていきたいと思います。データ分析の知見が、問題解決や新たな施策の立案に大いに役立つと理解したため、業務全体でその手法を意識していくつもりです。 従来手法は適切? また、現在の担当業務を見直すことで、従来の方法が本当に適切であったのか、見逃している課題はなかったのかを改めて点検していこうと考えています。その結果を踏まえ、今回の受講で得た実体験の知見を活かし、今後必要となる知識やスキルの習得にも取り組んでいきたいです。

クリティカルシンキング入門

問題の本質を見極める重要性とは

問題の本質は何? 最初から考え始める際、答えを出すことに集中してしまい、何を明確にしたいのかを考えずに問題の本質を見逃してしまうことが多くあると気付きました。そこで、イシューを通じて問題の本質を明確にすることから始めることが大切だと思いました。 課題の焦点はどこ? 問題が発生した際、顧客の課題を明確にする必要があるときには、どうしても先のことを考えてしまい、足元の課題を見落として進めてしまうことがあります。まずは問題が何で、どこに焦点を当てるべきかに注目し、整理してから問題に取り組むよう心がけます。 分析のポイントは? 顧客の状況から課題を見つけて分析する際に、目先のゴールを気にするあまり急いでしまわないように心がけています。今何が問題なのかを明確にし、その問題を解決するためにはどのようなパターンが考えられるかを把握し、分析を進めていきます。

データ・アナリティクス入門

何から手をつける?4STEPで解決

何から手をつける? たくさんの問題に直面した場合、何から手をつけるべきか悩むことがよくあります。そのような状況で、今回学習した「問題解決のステップ」がとても印象に残りました。具体的には、「what」で直面している課題や状況を明確にし、「where」で問題の個所を絞り込み、「why」で原因をしっかり分析し、最後に「how」で原因に応じた有効な解決策を考えるという流れです。 どう整理して進む? このステップを活用することで、目についた情報に振り回されて時間がかかってしまったり、都合の良い情報ばかりを集めて「決め打ち」に陥ったりするリスクを回避できると感じました。今後、問題に直面したときは、まず「what」で問題の本質を把握し、次に「where」「why」「how」の順で整理していくことで、よりロジカルに問題解決に取り組んでいきたいと思います。

データ・アナリティクス入門

妥協を捨てた学びの軌跡

現状の問題確認は? 問題を特定する際は、What、Where、Why、Howの観点から確認する重要性を改めて感じ、ABテストの存在も初めて認識しました。また、分析を進める中で「このくらいでいいや」という気持ちを捨て、徹底的に考え抜くことの大切さを実感しました。 企画実行はどう? 自ら企画を立案する際も、同じ観点で問題を明確にし、仮説を立て、データに基づいた検証を徹底することが必要だと考えます。そうすることで、企画の実行可能性が高まり、周囲からの賛同も得られると感じています。 学びをどう活かす? これまで学んだ内容を丁寧に振り返り、積極的な実践を心がけたいと思います。業務が繁忙になると学んだことをおろそかにしがちですが、本講義で得た知識を振り返り、日々の業務にどのように適用できるかを考える時間を常に確保していきたいです。

戦略思考入門

本質を捉える学びで効率的な目標達成へ

本質を見極めるには? 物事の本質をしっかり見極め、目標を効果的に達成するためには、大局的な視点で情報をバランスよく収集し、分析して考えることが重要だと学びました。特に目の前にいる顧客の言葉をそのまま受け取るのではなく、なぜそのニーズが生まれたのか、その背景や取り巻く環境の変化を考慮することが大切です。そして、全ての整合を取るのは難しいため、自分なりの判断軸や基準が必要です。 最短で目標を達成する方法は? 現在担当しているプロジェクトや組織マネージメントにおいて、最も効果的に目的を達成するために、論理的に考え、可能な限り最速・最短距離での到達を意識したいと思います。本質的なゴールを設定し、優先順位を決めたうえで逆算しながらプロセスを描くことで無駄を省きます。進行中は、様々な試行錯誤をし、臨機応変に軌道修正をしながら進めていきます。

データ・アナリティクス入門

適切な比較が導く分析力アップの秘訣

比較の本質とは何か? 分析の本質は比較にあり、適切な比較対象を選ぶことが重要であると学びました。特に、比較対象が適切かどうかを判断する際には、分析の目的に立ち返ることが大切だと感じました。 外部環境の影響にどう対処する? 中期経営計画の策定や予算予想の達成に向けて、事業の課題や改善点を過去の実績から分析するだけでなく、外部環境が事業に与える影響についても分析し、仮説を立てる場面でこの知識を活用したいと思います。 日常業務での気付きと見直し 講義を聞いた時点では、一見すると当たり前の内容に思えることも、実際に練習問題を解こうとすると、目的を忘れ、適切な比較対象を考えられないことに気づきました。私自身も業務において、本来の目的から外れた分析や結論に至ることがあるため、適切な比較ができているかを常に見直す習慣を持ちたいと考えます。

データ・アナリティクス入門

分析で見つけるビジネス成長の鍵

明確な分析目的を設定するには? 分析を行う目的を明確にし、必要なデータを適切に特定する重要性を再確認しました。指示する側とされる側の間で、作業前に前提条件にずれがないか確認する必要性も理解しました。このプロセスは、KPI設定や検証の際にも当てはまります。設定した目標が会社の方針と一致しているか、常に確認することが求められます。次回の対策を考えるためには、分析に必要なデータにズレがないかを検証し、そのデータが本当に有効かどうかを追求します。 ターゲットの再選定は必要? また、会社としてターゲットをどこに設定するかを再選定する必要があります。現在の顧客の業種別売上傾向やエリア別売上を詳細に分析し、各エリアの特性や注力すべき業種を見極めます。また、機会損失が発生している箇所を特定し、適切な対策を講じることが求められます。

データ・アナリティクス入門

原因追求で成果を最大化する方法

分析フレームワークの活用法 分析手法として「What, Where, Why, How」というフレームワークを用いることは非常に参考になりました。つい「How」にばかり注目しがちですが、まずは現状と理想とのギャップを明確にし、周囲との合意を形成しながら進めることが重要だと感じました。 売上未達の原因特定と対策 売上未達の要因を特定し、対策を考える際にも役立ちそうです。これまでは経験や勘に頼りがちでしたが、このフレームワークを行き来しつつ、効果的な打ち手を模索したいと思います。 問題の本質を探るためには? まずはMECEに基づいて、あらゆる要因を考慮しながら問題の本質を探りたいと考えています。また、問題の特定や仮説に関しては、他のチームメンバーと意見交換を行い、精度の高い取り組みとなるよう努めたいと思います。

データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

データ・アナリティクス入門

データ分析で仮説と検証を学ぶ

仮説の立て方を見直すには? 今まで、データ分析において仮説から検証のプロセスをなんとなくで行っていたが、複数の仮説を立てることや、網羅性を持たせることはあまり意識していなかった。また、立てた仮説の検証だけでなく、反対の事象を裏付けるデータも収集することで、より説得力のある仮説検証ができる点も意識すべきだと感じた。 データ分析を業務にどう活かす? 今後、業務でデータ分析を行う際には、仮説立てから検証までのプロセスを意識的に組み込むようにしたい。現在取り組んでいる運転資本の改善についても、問題がどこにあるのか(Where)を仮説立てし、既存のデータから分析を行うようにする。そして、Whereが特定できた後には、なぜその問題が生じたのか(Why)の仮説を立て、その仮説を立証するための分析方法を検討するつもりだ。

「分析 × 本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right