クリティカルシンキング入門

切り口で掴む自分だけの学び

データはどう分ける? データの傾向を把握するためには、まず分解してみることが大切です。1つの切り口だけでは明確な傾向が見えなくても、別の視点から検討することで新たな発見につながります。諦めずに複数の切り口で試す姿勢が、効果的な分析の鍵です。 来場者減少の理由は? 今週の例では、美術館の来場者減少の理由を探る中で「個人客」と「大人」という要素が浮かび上がりました。しかし、これらをすぐに結びつけ「大人の個人客が減っている」と断定するのではなく、各要素を独立した切り口として扱い、さらに深掘りしてみるアプローチが推奨されます。 本当に大丈夫? また、社内アンケートの分析経験から、上司に「見つけた要素を安易に結びつけないように」と指摘されたことがあります。締切のある報告資料では、急いで結果を出すあまり、自分に都合の良い見方をしてしまいがちですが、結論に飛びつく前に「これで大丈夫か?」と自問する習慣が、正確な分析を進める上で非常に有用です。 自由記述はどう解析? 今回の例は数字データを対象にしていましたが、実際の業務では自由記述の設問を分析することもあります。そういった場合も、データを分解して複数の切り口で考察し、さらに言葉の分析方法を試してみることで、より深い理解につながると感じました。

データ・アナリティクス入門

仮説検証で拓く本質への道

本質に迫る秘訣は? これまでは、都合の良い答えに飛びつき、裏付けが偏った分析をしてしまっていたことに気づきました。しかし、問題解決のプロセスに沿って仮説と検証を正しい順序で進め、事実に基づいて判断することで、本質的な課題に早くアプローチできると学びました。 目的の重要性は? また、分析に取り組む前には、まず目的を明確にすることが極めて重要であると実感しました。目的が曖昧だったり、途中で忘れてしまうと、結論を導き出せず成果へとつながりません。定期的に目的を振り返ることで、必要に応じた軌道修正が可能になるという点も大きな収穫でした。 複数視点の意味は? さらに、分析を行う際には、単一の数字や結果だけに頼らないため、比較を行うことの重要性を再認識しました。一つの指標だけでは陥りがちな思い込みを避け、複数の視点から検証することで、説得力のある結論に近づけると感じました。 具体策をどう試す? 具体的な実践としては、月ごとの売上データに実際に触れてみることにしています。これまでは解説付きの資料に頼りがちで、問題点やその対策が本質的に理解できていなかったと感じます。売上の増減に影響を与えている要因を、自部門の活動と照らし合わせながら振り返り、今後の対策へとつなげていこうと思います。

クリティカルシンキング入門

データ分析で広がる新たな視点

データ分析の基本を押さえるには? データを分析する際には、全体を定義し、MECE(漏れなく、重複のない)を意識した仮説を立てることが重要です。これにより、さまざまな切り口でデータを見ることができ、効果的な分析が可能となります。 また、データをグラフ化することで、視覚的に分かりやすくなり、判断基準を明確にすることができます。ただし、与えられたデータだけで結論を出すのではなく、自分自身で手を動かして深く分析し、異なるデータから他の現象が存在しないか確認することも重要です。 新たな分析法をどう模索するか? 販売データの分析においては、毎月同じ切り口でデータを出している現状があるため、新たな切り口を検討し、どのようにMECEで考えていくべきかを模索したいです。提供された資料の確認の際にも、仮説を持ち、さらに分析を深めることで、他にない切り口を模索していきたいと考えています。 データに接するたびに、MECEが適切にできているか、他にどのような分析の切り口が考えられるのかをしっかり考えたいと思います。また、数字をグラフ化することで、よりわかりやすく情報を整理することの重要性を学びました。これにより、固定概念に囚われず、批判的な視点を持ちつつ柔軟なアプローチでデータに向き合っていきたいと感じています。

データ・アナリティクス入門

仮説と現場で読み解く数字の物語

現場で何が起きる? 平均値などの代表値を把握するだけではなく、現場で実際に何が起きているかを想像しながらデータに向き合うことが大切です。そのため、自分自身で仮説を立て、仮説検証型で分析を進めることが求められます。分析の目的に応じて比較する対象も変わるため、たとえば「夏の気温は本当に上昇しているのか」という問いに対して、単純に1年前のデータや他の地点のデータと比較するだけでは、十分な答えは得られにくいでしょう。 ビジュアルで何が分かる? また、代表値の理解をより精緻なものにするために、データのビジュアル化を試みることが重要です。第三者に伝えるときだけでなく、自分自身で数値を分析する際にも、数字だけでは見逃しがちな現場の情報に焦点を当てるため、ビジュアル化の活用を心がけましょう。 AI活用はどう役立つ? さらに、医療施設ごとの売上や従業員ごとの活動履歴など、大量かつ複雑なデータに関しては、定型的な加工に陥りやすい傾向があります。まずはデータの分布を把握するためのビジュアル化を行い、分析の目的に合ったデータの特徴を考察する時間を確保することが推奨されます。このプロセスにはAIの活用が有効であるため、迅速に作業に取り掛かれるよう、使用するプロンプトをあらかじめ保存しておくと便利です。

クリティカルシンキング入門

問題解決の視点を広げる学び

本質は何だろう? 問題解決を行う際には、まず何が問題なのかをしっかりと定義することが重要です。問題が本当にその部分にあるのか、あるいは「そもそも」といった観点で見直してみることも大切です。その後の分析やアクションを行う際にも、常に問いを意識することで、本質から逸れることなく、もしズレが生じた場合には適切に軌道修正することができます。 対策はどう考える? たとえば、チームに人手不足という問題がある場合には、人員を増やすという対応だけでなく、同時に生産性の向上や仕組みの効率化を図ることが求められます。また、システム操作が煩雑で非効率だと感じた場合には、システムの改修を行うだけでなく、補助的なツールや直感的に理解しやすいマニュアルの整備を通じて生産性の向上を目指します。こうした問題を複数の視点から捉え、それぞれに合ったアプローチを実施することが重要です。 気づきはどう引き出す? また、メンバーに対して問いの重要性を示すことで、彼らから新たな気づきを得ることができるかもしれません。定期的に自分の活動を見直し、無意識のうちにバイアスがかかっていないかを確認することも重要です。他の人から異なる視点や意見を求め、自身にはなかった新たな問いを取り入れることで、自分自身の視野を広げることができます。

クリティカルシンキング入門

イシューを極める学びの旅

どのイシューに注目? 今回の学びで、フォーカスすべきイシューを正しく把握する重要性を再認識することができました。どのイシューに注力すべきか、そしてそのために何から取り組むべきかを明確にしなければ、成果に大きな差が生まれるという点は、今後の活動において大変参考になります。特に、ある有名ファーストフードチェーンの事例は、イシューの捉え方を考える上で非常に示唆に富んでいました。 エリアプランはどう整理? また、四半期、半期、年間のエリアプラン作成においても、この考え方は大いに役立つと感じています。エリアの現状や課題を正しく把握し、優先順位をつけること、さらには複数の解決策のオプションを検討することが重要です。顧客の反応を継続的に分析して、アクションプランを再構築し、必要に応じて追加検討を行う際にも、この学びは非常に活用できると考えています。 市場を多角的に見る? さらに、様々な角度から市場を分析することで、ターゲットとするイシューをより正確に把握する努力を続けたいと思います。仮説を立て、その検証結果をもとに改善を重ねるプロセスを通して、本当に必要な知識を身につけることが目標です。また、チーム内で得た知見を共有し、議論することで、さらに理解を深めることができると確信しています。

データ・アナリティクス入門

課題の核心に迫るMECE思考

原因を見極めるには? 問題の原因を分析する際には、まずプロセスごとに分解し、どこに問題が存在するのかをMECEの視点で明確に特定していく作業が重要だと学びました。このアプローチにより、原因分析なしにどのように解決策にたどり着くかが分からなくなる事態を回避できます。また、特定した原因が実際に問題の根本的な要因であるかどうかを検証するために、他の条件を極力同一に保った上で、原因がある場合とない場合の結果の違いを確認することが必要です。 なぜ原因を掘り下げる? 監査の現場において、課題を発見した際に「何が、どこで問題なのか」という点(WHAT・WHERE)だけを把握して満足してしまい、なぜその問題が生じたのか(WHY)まで掘り下げられず、結果として効果的な改善提案(HOW)がなされない場合があることを実感しました。今後は、プロセスに沿った課題の特定と原因分析により意識を集中させる必要があると感じています。 仮説検証をどう進める? 今後は、課題の特定及び原因分析の際に、MECEの視点をしっかりと意識し、問題の発生箇所と原因を的確に絞り込んでいきたいです。その際、立てた仮説を決め打ちにせず、データ分析を活用して客観的に検証することを心がけ、より精度の高い改善提案を実現していきたいと思います。

データ・アナリティクス入門

目的意識が導く新たな一歩

理解不足は何故? 「どこに問題があるのかを4つの視点で考える方法」について、これまでの学習テーマに比べしっくりこなかった部分もあり、自分の理解力不足を痛感しました。また、マーケティングの学習中に出てくる専門用語が多く登場したため、改めて具体的な事例に照らし合わせながら学ぶ必要性を感じました。 A/Bテストは何が肝心? CRMのメール発信を担当している経験から、これまでA/Bテストに取り組んできたものの、手法そのものを知っている・実施したというだけではなく、テストを行う前の目的を明確にし、AとBそれぞれの「誰が、何を、なぜ」という点をしっかり考慮しないと効果が半減してしまうと実感しました。 全体目的は明確? プロモーションなどの一部の発信手法に留まらず、事業全体の目的を明文化し、グループ内で共有することの重要性を改めて感じました。分析、課題、仮説といった学習内容からは一歩離れるものの、問題の原因や仮説を検討する前に、まず全体の目的や前提となる問題があることに気づかされました。 目的は全員一致? また、各自が担当プロジェクトの目的を意識する体制において、それぞれの目的が本当に矛盾なく共有されているのか、今更ながら疑問を感じるとともに、再確認する必要性を強く認識しました。

データ・アナリティクス入門

仮説×分析で開く解決の扉

仮説立案の基本は? 仮説には、結論に至る仮説と問題解決に焦点を当てた仮説の二種類があり、問題解決の仮説では「What(問題は何か)」「Where(どこに問題があるか)」「Why(なぜ問題が発生しているのか)」「How(どうすべきか)」の順序で検証することが基本と学びました。 フレームワークは効く? また、仮説を立てる際には、3C分析(市場・顧客、競合、自社)や4P分析(製品、価格、場所、プロモーション)といったフレームワークの活用が有効で、これにより具体的かつ詳細な仮説を構築しやすくなると理解しています。 効果検証はどう? 現在、交通系ICカードで決済するとポイントが10倍になるキャンペーンの効果検証に取り組んでおり、決済回数や決済金額の増加などを評価指標としています。この分析に際しては、問題解決の仮説を立て、3C分析や4P分析を積極的に取り入れることで、データ分析の精度を向上させることを目指しています。 分析精度を上げるには? 所属部署では専門のデータ分析担当者がおらず、これまで独学で自己流に分析を行ってきました。今回学んだ仮説の立て方やフレームワークをさらに活用し、数値の取り方や検証方法を体系的に整理することで、分析の精度を一層高めたいと考えています。

データ・アナリティクス入門

要素分解が開く学びの扉

分解と分析はどうする? 分析を行う際は、まず対象を要素に分解することが重要です。ロジックツリーやMECEの考え方を活用し、問題解決のステップとしてWhat、Where、Why、Howに分けることで、あるべき姿と現状、そして現状と理想のギャップを正確に把握できるよう心がけています。 店舗のギャップは? また、実務の現場では、宿泊客のデータ比較や社内の研修で、グループ内の各店舗のありたい姿を設定し、現状とのギャップを店舗ごとに分析する取り組みが行われています。このような分析により、各店舗の改善点が明確になり、実効性のある対策が立てられるようになっています。 研修資料はどう整える? さらに、新入社員向けの研修資料作成においてもMECEを意識し、内容を整理することが求められています。現状、社内向けの資料が十分に整備されていないため、今回学んだことを活用して、より実用的で分かりやすい資料作りに努めています。 口コミ低評価をどう克服? 口コミ評価が低い店舗を訪問する場合、現状とあるべき姿のギャップを3つ以上洗い出し、具体的な改善点を見つけることが求められます。初回の動画視聴だけでは本質を理解しきれないため、何度も視聴しながら自分の手でメモを取ることで、理解と記憶の定着を図っています。

クリティカルシンキング入門

図で読み解くデータの真実

視覚化のコツは何? 今回の講座を通じて、視覚的に分かりやすい図表の作成や、元データを複数の視点で分解してグラフ化する手法を学びました。情報を可視化することで、データの本質に迫ることができ、分析の精度が高まる点が非常に印象的でした。 分解視点はどう活かす? また、データの分解方法として、When(時間)、WHO(人)、HOW(手段)の視点を活用し、仮説を立てながらデータを読み解くアプローチは、理論と実践をうまく結びつけると感じました。こうした手法により、伝えたい内容を論理的に整理し、より明確に説明できるようになると思います。 情報分解の秘訣は? さらに、MECEの考え方を用いて情報を漏れなく、ダブりなく分解する技術についても学びました。層別分解、変数分解、プロセス分解といった具体的な切り口を通して、第三者にも分析の背景や意図を的確に伝える方法を身につけることができました。 課題抽出はどう確認? 最後に、アンケート結果や経費使用の分析を通じて、課題の抽出と適正な施策検討につなげる事例は、実務における分析の重要性を改めて認識させられる内容でした。自分自身でデータを作成する際や、他者のデータを検討する際に、適切な分解と背景の説明が説得力を高めるポイントであると感じました。

データ・アナリティクス入門

データから学んだストーリー分析の重要性

問題解決の4ステップは? 問題解決には、what(何)、where(どこ)、why(なぜ)、how(どのように)の4ステップがあります。経験や勘に頼らず、まずは事象をMECE(Mutually Exclusive, Collectively Exhaustive)に分解することが根本的な解決につながります。 分析のストーリーは重要? データを目の前にして即座にグラフ化したり、平均値や割合を出すのではなく、「なぜそうなったのか?」というストーリーを持って分析することが重要です。 データ取得の企画段階とは? 今後進行する実証実験の検証項目を明確にするため、企画段階からデータ取得方法を組み込む必要があります。また、マーケティングインテリジェンスのグループに異動するにあたり、ネット上のデータを鵜呑みにせず、なぜそうなっているのかの背景をシステマチックに考えることが大事だと感じました。 実証実験のゴールは? 現段階で検証項目の洗い出しは終わっているため、最終的な実証実験のゴールと、理想的なデータを意識しながら、今月中に取得方法を検討します。また、市場調査ではデータだけでなく、なぜそのようなデータが集まったのかについて、社会動向をチームメンバーとディスカッションする機会を設けます。

「分析 × 本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right