データ・アナリティクス入門

フレームで切り拓く問題解決

分析で何が分かる? この講義では、業務の問題解決のために「分析」を徹底的に学び、質の高い意思決定スキルを向上させることがテーマでした。分析とは、比較を行うことにより現状を理解する手法であり、問題解決に取り組む際は、まず解決すべき問題を明確にし、状況の全体像を把握する必要があると感じました。 仮説はどう練る? さらに、問題点の仮説を立て、どのようなデータを用意し、どのように加工して何を明らかにするかというストーリーを作ることが重要です。闇雲に分析を進めるのではなく、グラフを活用するなどして、周囲への説明が分かりやすくなる工夫が求められます。 どんな枠組みを活かす? また、今回の講義では様々なフレームワークを活用する手法についても学びました。ロジックツリーを用いてMECEに問題を絞り込む方法、定量分析の視点として何を比較対象にするかやどのグラフを使用するか、さらにデータを平均値や中間値に集約して分析する方法など、具体的なアプローチが紹介されました。相関係数や度数・時系列・パレート分析といった数字に基づいた分析の手法や、3Cや4Pの軸で仮説を広げる方法にも触れ、ビジネスにおける仮説には結論の仮説と問題解決の仮説の二種類があることも学びました。 実践でどんな変化? 私は営業支援の仕事に従事しており、データ分析を通じた得意先への課題解決提案を今後も継続していく考えです。これまで自己流の分析やストーリーの立て方では、汎用性に欠ける面やサポートのしづらさを実感していましたが、本講義で学んだフレームワークや定型の分析手法を取り入れることで、体系的に仕事を進められるようになりました。特に、若手メンバーへのサポートにも大いに役立てたいと考えています。 今後の対策は? ただ、問題解決の4つのステップに対して、それぞれに合った分析手法やフレームワークの整理がまだ十分にできていないと感じています。今後は、皆さんと議論しながら確認する機会を持ち、より深く理解を深めていきたいと思います。

データ・アナリティクス入門

仮説思考が拓く学びの扉

仮説思考は何のため? 仮説思考は、効率的な分析を行うために欠かせない手法です。基本的なステップは、目的(問い)の把握、問いに対する仮説の設定、データの収集、そしてそのデータをもとに仮説を検証する、という四段階で構成されます。 どのデータを集める? データ収集の方法は大きく二つに分かれます。まず、既存のデータを集める方法として、検索エンジンや各種リサーチサイトを活用します。次に、まだ存在していないデータについては、実際に観察したり、有識者へのヒアリングやアンケートといった方法で収集を行います。 五視点はどう活かす? また、仮説思考を実施する際には、以下の五つの視点が重要です。インパクトではその影響力の大きさを、ギャップでは何がどのように異なるのかを捉えます。トレンドでは時間的な変化や変曲点、外れ値に注目し、ばらつきではデータの分布が偏っていないかを確認します。最後に、パターンの視点からは、法則性があるかどうかを見極めます。 グラフ化の手順は? グラフ化を行う場合には、次の三つのステップが有効です。まず、仮説や伝えたいメッセージを明確にし、次に比較対象を設定、そして適切なグラフを選んで情報を整理します。 経験が必要な理由は? 仮説思考については、これまでチームでの実践経験がないため、上司に相談しながら取り組むことが望まれます。一方、データ収集に関しては、企業独自の情報をうまく活用することで、新商品の開発に役立つ可能性があります。また、来月更新される免税施策に関しても、その対応方法を検討していく必要があります。 新規取り組みの課題は? 組織の一員として新たな取り組みを始めるのは容易ではありませんし、チーム全体が仮説思考の本質を正しく理解しているかどうかも不透明です。来週から開始されるデジタルのショッピングクーポンの運用にあたっては、まずデータ収集を行い、半年先や来年度の数字を分析する可能性を模索するものの、まずはデータ収集自体に時間を要する点が懸念されます。

データ・アナリティクス入門

データ分析で見抜く!成功の秘訣とは?

代表値や散らばりは? 今回の学びでは、データ分析における重要なポイントを整理しました。まず、定量分析を行う際には、「代表値」と「ちらばり」の両方を把握することが重要です。代表値には、単純平均や加重平均、幾何平均、中央値があり、それぞれの特徴を理解することでデータの中心を捉える手助けになります。また、平均値を算出する際には、外れ値の確認が不可欠です。ちらばりには、標準偏差や正規分布があり、それらを活用してデータの散らばり具合を把握します。さらに、データをビジュアル化することで、特徴的な傾向が捉えやすくなりますが、その際には正しいグラフを選択することが求められます。 相関か因果か? 次に、相関関係と因果関係の分析についてです。相関とは二つの要素がどのように関連しているかを示すものであり、因果関係とは原因と結果の関係です。これらをセットで分析し、次の打ち手を考察することが重要です。しかし、因果関係は誤認しがちであるため、自分の都合の良い分析結果に偏らないよう、常に意識して考えることが必要です。 分析は比較ですか? 今回の復習では、分析とは比較であることを再確認しました。問から仮説を立て、データ収集を経て、それを検証するというプロセスを繰り返すことが基本です。インパクトやギャップ、トレンドなど様々な視点からデータを分析し、グラフや数値、数式を使うことが有効です。 ツール選択はどう? 現状では、時系列分析を多用しており、分析ツールとしてTableauやSPSSを利用しています。これにより、顧客データや売上データ、プロモーション費用などを扱っています。具体的な分析例として、まず相関関係の分析においては、売上とプロモーション費用との関連を見て、どのプロモーションが効果的であるかを判断することを目的としています。また、パレート分析では、顧客をグルーピングし、どの顧客が優良であるかを可視化しています。これにより、優良顧客の特徴を把握し、効果的な販促やプロモーション計画の立案に活かしていきます。

マーケティング入門

戦略の切り分けが未来を拓く

セグ分けの理由は? セグメンテーションでは、自社に合った切り分け方を考えることの重要性を再認識しました。法人向け商品の場合、規模や外資・日系の違いなどで分けるといった視点は、非常に実践的だと感じます。また、顧客企業の規模、製品の市場、製品サイズ、生産ロットの違いなど、具体的な分類軸が挙げられており、これらを基に自社の戦略を練り上げることが大切だと思いました。 ターゲットはどう見る? ターゲティングに関しては、6R(市場規模、成長性、競合状況、優先順位、到達可能性、反応の測定可能性)という評価基準のうち、特に市場規模、成長性、競合状況の3点が鍵になるとの考えに納得しました。これにより、市場の魅力と自社が勝ち残る可能性とのバランスを適切に判断して、新たなターゲット層を掴む戦略の重要性を学びました。 強みはどう伝わる? ポジショニングの部分では、2つの要素を縦軸横軸に配置したポジショニングマップを用いる手法が印象的でした。単一の価値だけでは競合との差別化が難しい場合も、複数の価値を組み合わせることで独自の魅力を生み出せるという点が参考になりました。顧客の視点から自社の強みが明確に伝わるよう工夫する必要があると感じています。 事例から何を見る? さらに、航空機業界向けとして開発された機械が実は他の業界からの引き合いが多かった事例は、各ターゲットの市場規模、成長性、競合の状況、そして開発品のメリットを具体的に把握することの重要性を改めて認識させてくれました。今後はリサーチ部門との連携を深め、より精度の高いターゲット選定を実現していきたいと考えています。 有効な策は何か? 特にBtoBのマーケティングにおいて、どのようなセグメンテーションが有効なのか、他社の事例や先輩方の経験を伺いながら、自社の戦略に反映させていくことが今後の課題だと感じました。全体として、戦略的な市場分析の基本的な考え方と具体的な手法について、非常に実践的な学びを得ることができたと思います。

データ・アナリティクス入門

仮説で解く!未来への挑戦

仮説分類はどう理解? 仮説の分類について学んだことで、結論の仮説と問題解決の仮説という二つの考え方を理解することができました。結論の仮説は、ある論点に対して仮の答えを示すもので、たとえば、ある飲料メーカーがノンアルコール商品の健康面へのアピールを通じて客層を拡大した事例が印象的でした。一方、問題解決の仮説は、現状の現象から原因を究明し、対策や予防策を講じるための仮説であり、データの収集と分析能力の向上が不可欠であると感じました。 仮説で説得力は増す? また、仮説を立てることで検証マインドが育ち、他者に説明する際の説得力が増すことを実感しました。エビデンスに基づく行動が、具体的な改善策の実現を後押しすると考えています。 減少原因は何? 具体的な事例としては、まず勤務先の大学において、受験者数が過去4年間で大幅に減少している現状があります。この原因を解明し、定員確保につなげるためにも、仮説の活用が大変有効だと感じています。 精神問題はどう見る? さらに、偏差値の高低にかかわらず、精神的な問題を抱える学生が増加している点にも直面しています。ADHDやASD、ゲーム依存などの問題が見られ、これが原因で学生間や教職員とのトラブル、保護者からの苦情、さらには退学や留年の増加につながっていると考えています。これらの現象について、過去の研究や調査、実践活動報告を参考にしながら、本学での適切な対策を検討するために、問題解決の仮説を立てて取り組む必要があると思います。 対策の進め方はどう? 具体的には、まず学生相談室や担任、教職員へのアンケートを実施し、各部署からの情報を集約します。次に、問題とされる事案の件数や種類、これまでの対応内容とその結果を整理し、国のガイドラインやマニュアルと照らし合わせることが求められます。さらに、他大学で実施されている取り組み事例を調査し、本学で実施可能な対策案を策定します。その際、専門知識を持った人材や協力可能な関係機関との連携も視野に入れる方針です。

戦略思考入門

新規事業への挑戦と差別化戦略の本質

顧客視点が差別化の鍵? 差別化戦略を考える上で、どの顧客に届けたいかを決めることが重要だとわかりました。顧客にとって価値が訴求できるか、固定観念に縛られず顧客視点で競合を意識することが、施策を考える上での重要なポイントです。また、模倣困難性の構築には歴史条件や因果関係の不明性、社会的な複雑性が絡んできて、単なる技術力だけでなく自社独自の顧客との関係性も含まれることが理解できました。どのようにそのネットワークをビジネスの中で活かしていけるか、今後考えていきたいです。 新規事業において別物を考え続ける理由は? 特に印象に残ったのは、動画の中の「ちょっとした差異ではなく、全く別物を考える」という言葉です。新規事業を考える上で、既存の仕組みの中にアイデアを無理やり入れ込もうとするのではなく、新しい仕組みを考え続けたいと思います。 ビジネスモデルの検討に重要な視点とは? 自身の業務は新規事業開発であり、自社の強みや独自性を入れ込みながらどのようなビジネスモデルが考えられるか検討する必要があります。まず、誰に対して価値を提供するのかを考え、3CでいうCompanyの分析をしっかり行うことが大切です。ただ、自社の独自性を活かしたモデルを意識して考えるのは非常に難しいと感じました。 フレームワークの実践で得られる効果は? また、差別化戦略では今後のビジネスプランの立案において、どのような施策を打ち出していくかが重要です。VRIO分析を用いて説明することで、より納得感のあるものができると感じました。 テクノロジーで可能にする新しいビジネスとは? 学んだフレームワークを身近な企業で実践し、チームメンバーに共有することも考えています。例えば、SWOT分析やバリューチェーン、VRIO分析を既存の事業で行ってみることです。現在の業務においては、自社の強みや独自性を考えるのは難しいので、「テクノロジーで可能になるビジネスは何か」という観点で間口を広げて考えてみたいと思います。

クリティカルシンキング入門

論理が教える!気づきと成長の実感

学びの意義は? クリティカル・シンキングの講座を通して、体系的な思考の枠組みを学ぶことができました。特に、情報や意見を論理的かつ客観的に分析する能力や、自分の考えを見直す「批判的な視点」の重要性を実感しています。 整理法はどう有効? ロジックツリーやMECEといったツールを活用し、複雑な課題を整理・分解する方法を習得できたことで、「何が本質的な問題か」「どうすれば抜け漏れなく考えられるか」といった視点が業務において非常に役立っています。こうした思考法を実践することで、判断力の向上や誤情報の見極め、さらには問題解決能力の強化につながると感じています。今後はこれらの方法を積極的に活用していきたいと考えています。 提案の要点は? 事業戦略の立案や上層部への提案で重要なのは、「イシューを明確にすること」「論理的な枠組みを構築すること」「根拠に基づいて主張すること」です。これらの要素が、課題の本質を捉え説得力のある提案を行う上で不可欠だと感じています。 実践の工夫は? この理想に近づくため、私は以下の行動を意識して取り組んでいます。まず、業務開始前に「今日のイシューは何か」を自問し、最重要課題を明確にメモにまとめます。次に、資料作成時は「誰に向けて」「何を伝えたいか」「どんな根拠が必要か」を考慮し、構成に工夫を凝らします。また、会議や打ち合わせでは「前提」「論点」「構造」を意識して話すことを心がけ、クリティカル・シンキングの考え方を実践しています。さらに、週に一度業務を振り返り、学びを記録することで知識の定着と応用力の向上を図っています。そして、上司や同僚とのコミュニケーションにおいても論理的な説明を意識し、説得力を高めるよう努めています。 成果への道は? これらの取り組みを続けることで、戦略的な思考をさらに磨き、より高い成果につなげたいと考えています。また、チーム内にクリティカル・シンキングの成果を浸透させる具体的な方法やアイデアがあれば、ぜひ共有をお願いします。

戦略思考入門

本質を追求する戦略習得の旅

戦略はどう明確に? 戦略立案においては、最初に「誰に対して、どのような価値を提供するか」を明確にすることが重要です。戦略や手法は、その後に検討すべき手段であり、それ自体を目的とするべきではありません。しばしばこの順序が逆転しがちで、手法が先行してしまう傾向があります。 差別化の秘訣は? 差別化に関しては、見かけだけでなく顧客にとって本質的な価値を持つ差別化が必要です。持続的な競争優位を築くには、競合他社が簡単に模倣できない要素を見出すことが不可欠です。差別化戦略は単に「他社との違いを作る」ことではなく、「顧客価値の創造」と「持続可能な競争優位の構築」を目的としています。これには、VRIOフレームワークが実践的なチェックリストとして有効であることを学びました。 ジムの真価は? 実例としては、あるフィットネスジムのように、「他のジムよりも高価格」であることが表面的な差別化です。しかし、その本質的な価値は「確実な結果を得られる安心感」や「マンツーマン指導によるサポート」、「高額投資による強制力」などが挙げられます。そして、それらの価値を持続的に提供するために、組織としてどのような体制を整えるかが重要です。 VRIOの立ち位置は? まずはVRIOフレームワークで自社の立ち位置を明確にしたいと思っています。私たちが提供できる価値や他社と比べての希少性、模倣困難性、組織としての行動を整理し、それを新規営業での提案資料として活用することが目指すところです。 既存客価値はどう? まず既存クライアントへの価値提供を強化し、VRIOフレームワークの各項目を確立します。たとえば、在庫管理システム案件の着実な遂行や生成AIを活用した業務効率化の提案資料作成、データ分析レポートの質的向上に取り組んでいます。 外部資源はどう活かす? さらに、外部リソースの確保も進めています。具体的には協力会社やフリーランスの選定、業務の切り分けの検討、引継ぎドキュメントの準備を行っています。

データ・アナリティクス入門

問題解決のプロセスを極めた学び

どうやって問題を整理? 問題解決の第一歩は「何が問題ないのか」を具体的に整理することです。この際、関係者間で「あるべき姿」と「現状」に対する共通認識を持つことが重要です。基本的な流れは、①「何が問題か?」②「どこに問題があるか」③「なぜ、問題が起きているか」④「どうするか」ですが、必ずしもこの順序に縛られる必要はなく、各ステップを行き来することが求められます。 ロジックツリーは有効? ロジックツリーの活用により、全体像を意識しやすくなります。MECE(Mutually Exclusive, Collectively Exhaustive)の考え方に基づいて、意味のある方法で問題を分けることが肝要です。 売上回復の道は? 売上が低迷している商品のリニューアルを考える際には、売上を回復させる目標を新規購入者の獲得なのか、離脱者の呼び戻しなのかによってターゲットやパッケージの方向性が変わってきます。関係者間で売上回復の基準を共通認識として持っていることが必要です。提案を説得力あるものにするためには、MECEを活用して効果的な方向性や代替案を提示します。 市場分析は足りる? プロダクトアウトの新商品の方向性を検討する場合には、市場分析が不足している段階で商品化が決定されたケースもあります。例えば、コンセプト調査を行ったものの生活者の反応が芳しくない場合、ロジックツリーを通じて問題の仮説を立て、検証し、解決策を模索します。 選択肢は適切? アンケート調査では、選択肢設定にMECEを用いることで効果的な結果を得ることが可能です。 プロセスの流れは? 商品化作業に取り組む際のプロセスは以下の通りです。まず、問題の共通認識を揃えるためにデータ収集を行い、関係者間で問題認識を共有します。次に、チームでロジックツリーを用いて網羅的に「Where」「Why」「How」の案を出し、それに基づいて方向性の第一候補と代替案に絞り込みます。その後、経営陣にこれを共有します。

データ・アナリティクス入門

平均スコアだけじゃ見えない真実

講義の学びは? 今週の講義では、「目的を持った分析」「比較による分析の有効性」「データ加工時の注意点」という三点について学びました。この中で、特に印象に残ったのは「データ加工時の注意点」です。 数値評価はどう理解? 講義中には、具体例として「商品スコアを単純に平均することへの違和感」が示されました。普段、商品レビューの数値評価を何気なく見ることが多いですが、実際はその数値に明確な定義がなく、平均をとるだけでは本当に知りたい情報が得られない可能性があると感じました。 加工注意点は? 例えば、壊れやすい商品であっても、デザインの良さだけを理由に最高評価をつける場合があります。そのようなデータを基に商品を選んでしまうと、「壊れにくい商品」を求める利用者は、平均スコアに惑わされる恐れがあります。このように、データを有効に活用しようとしても、加工や解釈を誤ると誤った結論を導いてしまう点に、データの恐ろしさを感じました。 業務データの活用は? また、私の業務では会員情報や購買履歴、アプリの行動ログといったデータを扱う機会が多いです。これらのデータは、抽出方法や加工の手法次第で結果が大きく変わるため、目的が曖昧な状態で扱うと、分析結果の解釈に迷いや無駄な検証を重ね、多くの時間を費やしてしまう危険性を実感しました。 目的を再確認? 今回の講義を通じ、「何を明らかにしたいのか」という目的を明確に持つこと、そして、データの数値が何を意味しているのかを常に意識しながら扱う重要性を改めて認識しました。今後は、単なる抽出や加工を目的とせず、分析の意義と加工方法の妥当性を見極めながら、効率的で意味のあるデータ活用に努めていきたいと考えています。 基本はどう捉え? さらに、今回の学習では、データの加工技術だけでなく、データマネジメントの基本や見落としがちな常識に重点が置かれていました。今後の授業でも、こうした基本部分を特に重視して学んでいきたいと思います。

デザイン思考入門

共感と疑問が導く学びの道

手順はどう大切? デザイン思考では、手順をきちんと踏むことの重要性を実感しました。デザインプロセスを分解し、グループワークを通じて多様な意見に共感する体験が非常に印象的でした。共感とは、必ずしも自分がポジティブに捉えなければ伝わらないということに気づき、考え方自体を受け入れるための大切な要素だと感じました。 顧客行動の本質は? また、顧客の行動に注目することで、本質的な課題の糸口を見出すことができると学びました。現象面だけに目を向けるのではなく、これまでの経験からくる先入観を捨て、顧客を深く理解しようとする姿勢が、デザイナーとしては非常に重要だと改めて感じました。 言語化で何が変わる? 学びのコツとして、言語化、教訓化、自分化のプロセスがあることに気づきました。感じたことを言葉にすることで思考が整理され、ケースごとの客観的な分析を通じて新たな知見が得られると理解しています。従来は漠然と状況を把握し、過去の知見に頼っていた部分が、具体的な分析を行うことによってより豊かな学びへとつながると考えます。 WHYを掘り下げる? 企業支援の場面では、クライアントに自ら選択できる情報や分析結果を提供するだけでなく、お客様の行動を観察することに加え、なぜそのような考えに至ったのかという「WHY」を繰り返し問いかける姿勢が求められると感じました。例えば、商品企画の段階では、技術視点だけでなく、お客様が何に困っているのか、なぜそのような状況になったのかを徹底的に掘り下げることで、議論や仮説にとどまらず、お客様の実情を実感していただくことが重要だと思います。 どう選択肢を広げる? さらに、企業支援の現場で「WHY」を追求する思考を実践しながら、選択肢を広げるための説明ができるよう努めたいと考えています。自身でも、適切な質問を工夫して「WHY」を促進するだけでなく、自分のバイアスに気を留め、相手の意見に対しても好奇心を持って傾聴する姿勢を大切にしていきたいと思います。

クリティカルシンキング入門

思考の偏りを解消するクリティカルシンキングの力

クリティカルシンキングの目的とは? ワークを通して、思考は偏りやすいことがよく分かりました。クリティカルシンキングを学ぶ目的は、頭の使い方を知り、思考の偏りをなくすことだとわかりました。その際、有効な方法の一つがロジックツリーで、考えやすい部分だけを掘り下げないようにすることができます。私はアイデアが浮かんだ際に、物事のある一面だけを膨らませて進めようとする癖があるため、まずは目的達成に必要な要素を整理するようにしたいと思いました。 お客様の声にどう対応する? 私はソフトウェアの保守サイトの運営やコンテンツの制作を担当していますが、お客様アンケートなどで「情報は豊富にあるが、目的の情報にたどり着かない」という声を多くいただきます。この課題をクリティカルシンキングを学んで解決したいと考えています。お客様によって導入の目的、運用スキル、使いたい機能などが異なるため、それぞれの目的の情報にたどり着くためにどのような導線を用意すればよいのか?その際、どのような視点でお客様の行動を分析するのがよいのか?などを、社内の複数部門で連携し仮説を立てているのですが、いずれのシーンでも判断が難しい状況です。クリティカルシンキングで思考の制限を取り除くことができれば、このような場面で正しい状況判断ができ、効果的なCX改善につなげられると思っています。 思考制限を取り除くには? 自分の中で思考を制限してしまわないように、広くいろいろな立場の人の意見を収集して課題分析することが必要だと思いました。最近は会社の方針で時間の節約を求められるため、限られたメンバーの意見をもとに課題の改善検討を進めることが多くなっています。講座の中でも「社内の常識は非常識」という話が出ていましたが、社外の専門家の意見などを幅広く収集する機会を増やしてもよいと思いました。また、収集した課題をロジックツリーなどにあてはめ、要素分解することで、課題の本質が想定外のところにあることに気付ける機会を得られそうです。
AIコーチング導線バナー

「分析 × 本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right