データ・アナリティクス入門

学びを実践へ!クロス集計から脱却する方法

業務に手法を活かすには? これまでの学びを通じて、「これは使える」という手法を早速業務に活用してみました。しかし、総合演習では「どれを選択するのか」を考えたとき、これまでの学びがまだ身についていないことを実感しました。また、分析に際してクロス集計に依存している自分の癖にも気づきました。他の手法は示唆されれば思いつくものの、依然としてクロス集計に頼ってしまいます。せっかく学んだものを生かし切れていないと感じ、今後は意識していろいろな分析手法を活用する必要があると痛感しました。数をこなすことでしか選択肢の幅を広げることは難しいと学べたことも良かったと思います。 プロセス分解で何が変わる? 問題の原因を明らかにする際にはプロセスに分解することが重要であると気づきました。当たり前のことですが、自分ではそれができていないという発見がありました。また、経験に基づいた仮説を決め打ちしてしまう癖があることにも気づかされました。プロセスに分解する利便性と、その方法が他者への説得力につながるメリットを業務における実績分析でも生かしていきたいと考えています。具体的な手法として紹介されたA/B分析は既に使用していたものの、それをA/B分析と認識していなかったため、目的や仮説設定、検証の項目が曖昧でせっかくの検証結果を生かし切れていなかったと思います。 需要縮小期にどう対応する? 私の扱う製品は急激な需要縮小期を迎えています。そのため、よく「時代の流れ」として片づけられることが多く、そこで分析が止まってしまっていました。しかし、本当にそれだけが原因なのでしょうか。私は「なぜそうなったのか」をプロセスに分解し、正しく理解することが解決策を得るうえで重要な鍵であると考えるようになりました。幸い、過去の業界・当社の実績データはあるので、まずはそれを改めて分析しようと思います。「時代の流れ」以外の要因がないかを探し、その要因に対処することで売上に貢献できるのではないかと考えています。決め打ちせず、様々な選択肢を探ることで、今よりも良い施策を打てるかもしれないと希望を持っています。

マーケティング入門

ポジショニングで見つける学び

既存商品の強みは? 教材で紹介されたある企業の事例を通して、既存商品の強みを活かしながら新規顧客獲得を図る手法を学びました。具体的には、自社商品の特徴の中から2つの軸を設定し、その軸に基づいてポジショニングマップを作成することで、競合との差別化ポイントを明確にできる点が効果的であると感じました。また、「S(セグメンテーション)、T(ターゲティング)、P(ポジショニング)分析」のうち、SとTは受講前から理解しており、従来の業務でも活用してきたため、本講義でPの重要性を再認識できたことは大きな収穫です。 ペルソナの再評価は? これまでは、狙いたい層から逆算してペルソナを構築し、市場のセグメンテーション、ターゲティング、さらに広報施策へと展開する流れで進めていました。しかし、定期的なポジショニング分析を取り入れることで、ペルソナを再評価し、複数のペルソナやポジショニングマップを保有できることが分かりました。それぞれのターゲットに応じた訴求ポイントを明確にすることで、同一商品から多様な顧客の獲得につながる可能性があると考えています。 学生募集の戦略は? また、学生募集の広報活動における一例では、近年新設された学部を含む、さまざまな学部での募集戦略が検討されています。従来は、情報系志望者や理系学生をターゲットとし、WEB広告やDM施策を中心に実施していました。しかし、競合と比較した場合、自学における「少人数指導」や「統計学・経営系科目の充実」といった強みを活かすことで、理系や情報系に興味はあるものの理数科目に苦手意識を持つ文系学生にも響く広報が可能になると考えています。 競合校調査はどう? まずは、ポジショニングマップを作成するために丁寧な競合校調査を行い、その仮定を裏付けるデータを確認することが重要です。これが実現すれば、ターゲット別の媒体制作の提案がよりスムーズに進むと考えます。また、情報学部だけでなく、経営、国際、看護など他の学部においても同様に競合校調査を実施することで、自学全体のターゲット層をより広げていくことができると期待しています。

データ・アナリティクス入門

分類の新視点、成功への一歩

分析とは何? 「分析=分類」という視点は、データ分析の本質を捉える上で非常に重要だと感じました。膨大な情報をそのまま扱うのではなく、目的に応じて比較可能な形に分類・整理することが、分析の第一歩であると認識しています。また、「分析とは比較なり」という言葉が示すように、異なる要素や時点を比較することで、初めて傾向や違いが明確になっていく点も学びました。 目的はどう明確? さらに、分析には明確な目的が必要であり、仮説を立てて検証するサイクルを回すことが、意味のある結果を得るために不可欠だと実感しています。この考え方は、数値の単なる把握に留まらず、どの部分を改善すべきか、どうすれば成果が上がるのかといった具体的な施策検討へとつながるものであり、今後の業務に積極的に取り入れていきたいと考えています。 講座促進策はどう? また、データ分析の知識は、当社が推進している講座の受講促進において大いに活かせると期待しています。具体的には、対象となる教育機関や宿泊業界における研修実績や予算、過去の導入事例などを定量的に整理・分析することで、より効果的な提案資料の作成や、営業の優先順位付けが実現できると感じています。さらに、各施策ごとの反応や申込数などを時系列で可視化することで、PDCAサイクルの精度向上にも寄与するはずです。 ターゲット抽出はどう? まずは、教育機関や宿泊業界の人材育成に関するデータ収集から始め、公開情報や補助金制度、業界レポート、ヒアリングを通じて得た情報をExcelで整理します。次に、予算規模や研修回数などの傾向を数値化し、明確なターゲット層を抽出していきます。その上で、ターゲットごとのニーズに合わせた提案資料を作成し、営業活動に活用する計画です。また、講座紹介の販促施策における各種反応率を記録・比較し、次回以降の営業活動の改善点を把握できるようにしていきたいと考えています。 継続学習はどう進む? 今回学んだ知見を踏まえ、まずは小さな一歩を着実に進めながら、継続してデータを扱う習慣を身につけ、業務の中で活用していく所存です。

データ・アナリティクス入門

ギャップに迫る!本質解明の軌跡

計画と実績はどう違う? 年間利益構造の表を見ていると、大きな数字や計画にない項目に目がいきがちですが、計画値と実績値のギャップに注目し、どの項目がどれだけ影響しているのかを把握することが重要だと感じました。 何を見落としている? また、これまで主体的にHowばかりを考えていた自分に気づかされました。さまざまなアイディアが出やすいからこそ、関係者全員が納得するHowを見出すためには、最初に【What】問題の明確化、次に【Where】問題箇所の特定、そして【Why】原因の分析、最後に【How】解決策の立案というステップを確実に踏むことが大切だと理解しました。 理想と現実は何が違う? さらに、業務でKPIを設定する際に、全国平均に頼るだけでなく、「あるべき姿」と「ありたい姿」という二つの視点の違いに気づく機会がありました。現状の分析で「あるべき姿」に留まるだけではなく、自分自身が描く理想の「ありたい姿」まで意識してKPIに反映させたいと強く感じました。 KPI改善は何から? 健康経営やエンゲージメント向上、女性活躍推進、男性育休推進といった分野では、現状分析、KPI設定、課題解決、施策の立案・実行を数値に基づいて進めることが求められます。いずれの場面でも、【What】、【Where】、【Why】の各視点で問題を正確に捉えた上で、【How】の提案を行うことが不可欠と実感しています。 具体的には、健康経営におけるKPIの見直しとして、まず現在設定しているKPIの現状を確認し、数値やグラフでギャップを明らかにしました。次に、相関するKPIの状況を把握し、どの指標が課題となっているかを明確にしました。加えて、多くのKPIの中から、進捗が思うように進んでいないものや他の進捗を阻むものを特定し、専門家の視点を参考にしながら原因を分析しました。その上で、現行のKPIが適切かどうかを再検証し、「あるべき姿」と「ありたい姿」を改めて確認しました。最後に、課題の原因に対して具体的な解決策を検討し、実行可能な施策へと落とし込むプロセスを実践しました。

戦略思考入門

持続可能な競争優位性を実現するための秘訣

戦略思考の気付きは何か? 今週の戦略思考で一番気付かされた点は、差別化された状態をいかに維持し続けられるかという点です。あるひとつの時点で見れば、当然新製品を導入するタイミングは自社有利に働きますが、顧客課題を解決できるものであれば、競合も同様のサービスや商品を提供・追従してくる可能性が高まります。そうなると競争の均衡が生じ、価格競争に陥りやすくなります。 継続的な競争優位性はどう維持する? 継続的な競争優位性を維持していくためには、本当の意味での自社の強みを理解し、その強みを生かす必要があります。それが製造ノウハウや技術力であるか、優れた営業スキルを持った人材か、過去に権利化された特許かもしれません。自社に関しては当然一番情報にアクセスしやすい立場にあるので、その強みをしっかりと見極め、いかに競争優位性を維持できるかをデザインしていく必要があります。デザインの見直し頻度も含めて戦略立案・推進していきたいと考えます。 自社の歴史から学ぶ方法は? 自社の歴史を振り返り、競争優位性が保てている商品・サービスとその理由、および保てなくなってきた商品の理由をいくつかのサンプルをピックアップして分析・評価してみたいと思います。その結果、本当の意味での自社の強みを理解し、それを事業戦略立案や商品戦略策定の根拠として活用します。また、それによって関係部門の役員への説得材料としても活用したいと考えています。 来季経営戦略会議に向けた計画は? 11月に全社役員を含む来季経営戦略会議が予定されており、そこをひとつのマイルストーンとしています。そこで戦略方針の提案を行い、承認を得るための計画は以下の通りです。 8月~9月:情報収集・分析。特に最も情報が取りやすい自社で競争優位性を保てているものの分析・評価。各種フレームワークを用いた外部環境・内部環境分析の実施とまとめ、特許情報も含む。 10月:戦略提案内容について関係部門との内容擦り合わせ。 11月:経営戦略会議での提案。 この計画を実行し、持続可能な競争優位性の確立を目指します。

戦略思考入門

戦略思考で拓く未来

会議で気づくポイントは? 物事の本質を見極め、目標達成に必要な打ち手をシステマティックに考える大局観とバランスの重要性を改めて実感しました。会議の場面では、誰が何に対して語っているかを明確にし、抜け落ちる観点がないかを俯瞰する意識が大切です。 分析して何を得る? また、マーケティングの基本フレームワークである3C分析、SWOT分析、PEST分析、バリューチェーン分析を活用し、自社の課題を多角的かつ具体的に洗い出すことの必要性を認識しました。短期的な成果と長期的なプラス効果とのトレードオフを踏まえ、ベターな選択肢を見極める姿勢が求められます。 分析比較の見どころは? 具体的な3C分析では、【顧客】としては従業員規模が小さく、特定の施策が十分に取り入れられていない点、【競合】としては戦略コンサルタントや大手金融チームの存在を踏まえ、【自社】では高価格帯でフルカバレッジを実現し、内定決定率が高い点が挙げられます。一方、SWOT分析においては、高価格帯や専門性、内定決定率、育成力が強みとされる一方、マッチングの効率性やスピード、自社採用のプロセス管理、マネジャーのスキルに改善の余地があることが示されています。機会としては人材の流動性やダイレクトリクルーティング、世界経済の変化、生成AIの進展が考えられ、脅威としては生成AIやAIを活用したエージェントの台頭が挙げられます。 未来予測の鍵は? さらに、上場している大手エージェントの中期経営計画や統合報告書などを生成AIで分析し、どのような3C分析やSWOT分析、バリューチェーン分析が行われているかを検証することが、今後の自社の取り組むべき課題を明確にする上で有益です。特に、ダイレクトリクルーティングや大手企業による社内転職が台頭した場合、5年後にどのような影響が生じるかを具体的に分析し、今後のプランニングに活かす必要があります。 計画の着実性は? このように、今後も全体を俯瞰しながら、具体的なアクションプランを策定して着実に実行していくことが重要だと感じています。

データ・アナリティクス入門

数字とグラフで見える成長

比較や仮説の意義に迫る? 本教材では、比較や仮説思考の重要性を改めて確認しました。大量のデータを扱う際、数字化しグラフなどで可視化することで、情報がより明確に把握できることが示されています。 代表値はどう選ぶ? 代表値として、単純平均、荷重平均、幾何平均、そして中央値が挙げられました。それぞれ、状況に応じた使い分けが必要です。たとえば、ばらつきが大きい場合や外れ値がある場合には中央値が適している一方、成長率などの変化割合を捉えるためには幾何平均が有効です。 標準偏差を理解する? また、データのばらつきを理解するためには、標準偏差が重要な指標となります。標準偏差は、平均値との差の二乗和の平均の平方根として計算され、数値が小さいと密集、大きいとばらつきがあることがわかります。正規分布の場合、平均値から標準偏差の2倍以内に約95%のデータが収まるという2SDルールも、実感としての起こりにくさの目安となります。 グラフの効果は何? まとめとして、代表値とばらつきを用いてデータの特性を把握し、グラフなどの可視化を利用すると、非常にわかりやすく情報を整理できることが強調されていました。具体例を用いた説明は非常に効果的で、内容が実践的に応用できる点も評価されます。 荷重平均の活用は? さらに、データ可視化の具体的な利点や、実際の場面で荷重平均をどのように活用するかについて、さらに考えを深める問いが提示されています。これにより、自らの分析手法を実践的に応用する視点が求められています。 実務でどう活かす? 最後に、実務への応用例として、メンバーの時間外労働の管理が取り上げられました。労働時間が所定の範囲内に収まるよう、グラフを用いて傾向を把握する方法や、外れ値がある場合に特定の商品のデータを除外して全体の傾向を見る手法が紹介されました。また、エクセルを活用して各メンバーの代表値やばらつきを算出し、分析の特性に応じた手法が使われているかを確認することで、より実践的なデータ分析支援に繋げる取り組みが示唆されています。

データ・アナリティクス入門

分析のアプローチで見えた新たな視点

分析とは何を指す? 分析とは「比較」のことを指します。現状を詳細に比較したり、物事を比較することで、解像度の高い理解や把握が得られます。 グラフや数値の算出方法を理解 今回の学習を通じて、具体的な分析アプローチとしてグラフや数値の算出方法について理解しました。データを算出する際には、代表的な数値(代表値)とデータの散らばり(分布)に分け、それぞれに具体的な手法が用いられます。代表値の例としては、単純平均、加重平均、幾何平均、中央値がありますが、特に幾何平均を用いた売り上げ予測の立て方が印象に残りました。また、分布の例としては2SDルールが紹介され、大枠の範囲を考慮した上で平均値を予想する方法が理解できました。 仕事における分析意識の向上をどう図る? ①分析のアプローチに対する仕事の意識 「分析 = プロセス × 視点 × アプローチ」という基本的な考え方を念頭に置き、これらに漏れがないように資料を作成したり、発言するといった意識を持ち続けます。 ②分析のアプローチに対する業務の行動 現状では単純平均を用いて比較することが多いですが、今後は分布やグラフを用いることで新たな気づきを得られるように努めます。 アプローチ方法をどう定着させる? ⓪分析全体の把握およびアプローチ方法の定着化 学習した「分析 = プロセス × 視点 × アプローチ」について、自分の言葉でまとめました。まずは用語や算出方法を含めて暗記し、アプローチ方法を定着させます。 SNS戦略での分析の改善策は? ①SNS戦略での分析の実施 現状では数値を取って把握することが主体で、十分な分析ができていません。今後は、定義に基づいた分析を実施し、比較が必要な場合には代表値や分布を用いて進めます。 データ分析の評価をどう行う? ②データ分析に関する評価 業務上、データから戦略や仮説を立てることが多いため、データに対して視点を持ったりアプローチを探したりすることで、新たな気づきを見つけ、それを共有します。

クリティカルシンキング入門

ビジネスのOS、クリティカルシンキングの極意

講座で学んだ基盤とは? 講座での学びを改めて整理しました。 まず、講座を通して学んだこととして、クリティカルシンキングはビジネススキルのOSであるという点が挙げられます。これは、問いを立て、筋の良い柱を立て、それを他者と共有しながら問題を解決することが重要であることを示しています。 クリティカルシンキングが鍵? 特にクリティカルシンキングに関して重要だと感じた点としては、以下のことがあります。まず、バイアスを自己認識し、思考の枠を外す行動を取ることです。具体的には、視点、視野、視座の三つの視や具体と抽象の行き来、複数の切り口などが挙げられます。また、ロジックを立てる順序は、まず柱を立てること、次に複数を出すこと、そして具体化することです。さらに、文章で伝えるためにはメッセージの整合性を保ち、アイキャッチを使用することが必要です。スタンスとしては実況中継ではなく、語り手の意図や示唆を伝えることが重要です。 忘れない判断軸とは? 次に、忘れないでいたい判断軸や指針として、問題解決にすぐ飛びつくのではなく、まずは問いを立てることが必要です。良い問いが良い問題解決を生むため、常に問いに立ち戻ることが大切です。 経営視点で何を考慮する? また、全社的な課題となっている販管費削減に関する論点整理をリードするために、単なる費用削減に留まらず、長期的な視点で根本的な改善を検討するべきかなど、経営視点に立ち問いを定義し、それに必要な分析やデータ収集を行う必要があります。本社部門や関連部門と問いを共有し、経営だけではなく、各部門の主体的な協力体制を築きたいと考えています。 実践に移すために何をする? 具体的なアクションとしては、まずこれまでの資料を通読し、指摘事項を整理します。次に仮説を立て、データを用いてその適切性を検証します。そして、スライドにまとめ(現状理解、問題定義、論点)、関連部門との対話を通じて内容を練り直し、最終的には経営に提出する予定です。この過程については上司と相談しながら進めていきます。

戦略思考入門

振り返りから広がる戦略の世界

戦略の本質とは? マイケル・ポーターの戦略論では、他社と同じことを単に効率的に行うのではなく、他社とは異なる価値を提供することの重要性が説かれています。こうした視点は、企業が独自の強みを追求する際に大きな示唆となりました。 5フォース分析の意味は? 業界環境を分析するためのフレームワークとしては、まず5フォース分析が挙げられます。これは、既存の競合、新規参入の可能性、代替品の脅威、買い手の交渉力、供給者の交渉力という5つの要因を通して、業界の収益性や脅威を見極めるための有効な手法です。 SWOTとPESTは何? 次に、SWOT分析によって、内部環境の強みと弱み、そして外部環境の機会と脅威を整理することができます。この分析は、企業がどの方向に向かうべきか、またどのような課題を解決する必要があるかを明確にする上で役立ちました。同時に、PEST分析を通じて、政治・法規制、経済・市場の動向、社会・文化や人口動態、さらに技術革新といったマクロ環境を整然と把握できたのも大きな収穫です。 3CとVRIOの効果は? さらに、3C分析により、顧客、競合、自社の視点から戦略を考える機会となりました。これにより、どのような価値をどの顧客に届けるべきか、また競合との差別化をどのように図るかが明確になりました。加えて、VRIO分析では、自社のリソースが経済的な価値を生み出し、希少であり、模倣困難かどうか、そして組織として活かせるかを評価し、持続的な競争優位に結びつく条件を確認できました。 計画への応用はどう? 中期経営計画への応用についても考察を深めました。具体的には、まずPEST分析でマクロなトレンドを把握し、5フォース分析で業界の収益性や脅威を整理します。その後、SWOTやVRIOで内部環境を総合的に見直し、3C分析で市場視点を加えることで、戦略の方向性を検討していきます。そして、短期から長期にわたる数値目標や重点投資分野、改善分野を明示しながら、実行可能な戦略として中期経営計画に落とし込む方法が示されました。

データ・アナリティクス入門

問題解決を極める!ナノ単科で学ぶステップ

問題へのアプローチは? 問題解決は、解決策を先に考えるのではなく、問題の明確化から始まり、問題箇所の特定、原因の分析、そして解決策の立案というステップを経て進めることが重要です。問題の明確化は、現状と理想とのギャップから始まります。問題箇所の特定や原因分析、解決策の立案は、ロジックツリーなどを活用して可視化し、丁寧に整理することで、順調に進めることができると考えられます。 手順の確認は? 問題解決のプロセスでは、まず問題を明確にし、その後、問題箇所を特定し、原因を分析し、解決策を立案します。この順番に従うことが基本ですが、次のステップに進んでうまくいかなければ、前のステップに戻ることや、ある程度方向性が見えたら解決策を試して原因を再度探るといった柔軟な方法もあります。 現実と理想は? 現状と理想のギャップから問題を明確化する際には、二つの形態があります。一つは、正常な状態から低下している現状を正しい状態に戻すための問題解決です。もう一つは、現状が正常であるにもかかわらず、理想に到達するために取り組むべき問題解決です。 ロジックツリーは? 問題の特定、原因の分析、解決策の立案の各ステップでは、ロジックツリーを活用することで、問題を要素に分け、どこに問題があるか特定します。最初に設定した問題を中心に、要素をツリー状に分けることで、MECE(もれなくダブりなく)の原則に従い、効率的に問題を抽出し、原因を把握し、解決に寄与することができます。 計画と実績は? 業績計画と実績の差異を分析する際には、計画(理想)と実績(現状)の違いを明確にすることが重要です。これまでは問題を明確にした段階で対策を考えていましたが、ロジックツリーを用いて構造化することで、問題箇所の特定や深い原因分析が可能となり、より効果的な解決策を実施できます。10月の業績に関するレビューが11月中旬に予定されているため、この方法を活用して問題箇所を特定し、原因を分析し、効果的な解決策を講じたいと考えています。

データ・アナリティクス入門

繰り返しが生む新たな発見

繰り返しの学びって? 全体を振り返ると、何度も同じ内容について整理し、記述を繰り返すことが学習において非常に重要であると実感しました。このプロセスの意味を学習テーマとは別に考えることで、新たな学びを得る機会となりました。 仮説疑問はどう? コースの初めに、「仮説とは何か」という疑問を持ち、データ分析のアプローチが状況により異なることを知りました。すでにデータが存在する場合と、データが無い場合では、分析に至る過程や組み立て方が大きく異なります。 既存データの活用は? 先にデータが用意されている場合は、目的を明確にした上で、データの特徴を探り、どの要素を比較するか、どのような傾向や動きを把握するかを平均、標準偏差、相関などの分析手法を活用して明らかにしていきます。その結果、見えてきた情報を体系的に整理することが可能となります。 無データの場合は? 一方、データが先に存在しない場合は、まず解決すべき課題や手がかりを見つけ、その観点に沿ったデータを収集します。具体的には、What-Where-When-Howという視点を順に確認し、マーケティングの基本的な枠組みを参考にしながら、適切なデータを取得し、課題を明確化するプロセスを進めます。その際、解決策や成功の可能性も同時に検討していきます。 記述重ねる理由は? また、同じ質問に何度も答え、記述を重ねる過程の意義についても改めて考えさせられました。学んだ内容が蓄積される中で、実際の業務にどのように適用できるかを具体的にブラッシュアップする必要があると感じました。 分析手法の見直しは? Q1では、分析に対する取り組み方を整理することができました。特にデータが既にある場合は、データを加工するための手法と知識が不可欠であることを再認識しました。しかし、今回のコースではその実践的な部分までは触れていなかったため、過去の振り返りと同様の記述となりました。今後は、実際に手を動かしてデータを扱う内容を学ぶ必要があると感じました。

「分析 × 本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right