アカウンティング入門

数字が築く信頼と説明の力

会計は何を伝える? Week1の学びの中で、最も印象に残ったのは、アカウンティングが単に数字を扱うだけでなく、説明責任を果たすための手段であるという点でした。財務報告は、顧客や投資家にビジネスの実態や判断理由を伝え、信頼を得るプロセスであると実感しました。数字の良し悪しを評価するだけではなく、その背景や意味を詳しく説明することが信頼構築につながると気づかされました。 数字の背景は? たとえば、売上増加が一時的なキャンペーンによるものか、リピート顧客の増加によるものかで意味合いは大きく異なります。こうした背景を説明することが、単に数字で語る以上に重要だと感じました。 業務効率化の目的は? 現在進行中の経理業務効率化プロジェクトでは、なぜその処理が必要なのかを明確にするため、処理フローを図解し、関係者ごとの視点で要点を整理した説明資料を作成しています。今後は、売上推移のグラフに要因分析のコメントを加えたり、プロセス毎の処理件数を可視化したりすることで、財務データとその意味をまとめ、現場の改善活動に活かしていく予定です。 説明責任の価値は? この考え方は、経理業務の効率化プロジェクトや月次報告資料の作成、説明の場面で特に役立つと感じています。社内の営業部門やマネジメント層に対して、業務成果や処理の背景をしっかりと説明する際にも、アカウンティングの「説明責任」の視点を活用したいと思います。 資金繰りの背景は? また、「なぜこのフローが必要か」や「なぜこの数値になったか」を、単なる報告に留まらず、損益計算書や貸借対照表の視点と結びつけて説明することで、たとえば特定の対応がどのように資金繰りに影響を与えたかといった具体的な効果を伝えられるようになると考えています。 処理フローの必要性は? そのため、まずは処理フローと財務数値との関連性を整理し、簡単な図や表で関係者に分かりやすく共有することが重要です。さらに、毎月の報告書には、数値の背景にあるビジネスの動きを具体的にコメントとして添えることを心がけ、数字の「正しさ」だけでなく「意味や背景」を丁寧に説明する姿勢を継続していきたいと思います。 Week1は何感じた? Week1の内容に関しては、特に追加する事項はありません。

データ・アナリティクス入門

なぜ?が未来を変える学び

なぜ問題は起こる? まず、問題が発生した際にすぐ解決策(HOW)を考えるのではなく、「なぜこの問題が起きたのか(WHY)」に立ち返る姿勢が大切だと学びました。たとえば、ある教育機関のケースでは、一見複数の悪い数字が散見されたものの、詳しく分解すると根本原因が一つに絞れるという発見がありました。表面的な現象だけでは的確な対策が打てないため、まず原因の深掘りが必要だと痛感しました。 ロジックで整理? また、ロジックツリーやMECEといったフレームワークを活用することで、論点整理に漏れや重複がなくなり、複雑な課題もシンプルな要素に整理できる点が印象的でした。これにより、解決すべき具体的な課題が明確になり、自分がリソースを注ぐべき事柄に優先順位を付けやすくなります。 既存施策の強みは? さらに、課題を因数分解することで、単に解決すべき問題だけでなく、既存の施策から成果が出ている部分を見出すこともできると感じました。これは、改善活動のみならず、自分たちの強みを再確認する良い機会となります。加えて、自らの打ち手がどの部分にどのように影響を及ぼすかを理解することで、効果測定が容易になり、施策の評価や次のアクションの決定に大いに役立つと実感しました。 業務標準化の秘訣は? 来季、部署内で進める「各拠点の業務標準化」においては、まず運用の差異がなぜ生じるのかを徹底的に分析し、表面的な違いではなく根本的な要因(たとえばシステム設定やスタッフ教育、地域ごとの慣行など)を明確にすることがポイントです。さらに、標準化が進まない理由を大項目、中項目、小項目という階層構造で整理し、プロセス、人材、システム、ガバナンスといった視点から抜け漏れなく検討することで、優先的に取り組むべき課題が見える化されます。また、標準業務の順守率やエラー率など、具体的な効果指標を設定することで、改善のインパクトを把握しやすくなると考えています。 優先順位は何故? 実践の際は、課題の重要度や緊急度だけでなく、実現のしやすさという観点も加えて優先順位を決めることが不可欠です。現場で課題に取り組む際、皆さんはどのような基準やプロセスを用いているでしょうか。ぜひ、具体的な事例や経験をもとに意見を共有していただければと思います。

クリティカルシンキング入門

MECE法で分かる問題解決の全貌と実践術

状況変化の把握方法とは? 状況の変化を把握するためには、「分ける」ことと「視覚化」がポイントとなります。「分ける」際には、複数の切り口を出し、機械的ではなく、目的に沿ってどのように分解すると状況が見えやすくなるかを考えることが重要です。この時に使える手法が「MECE(Mutually Exclusive, Collectively Exhaustive)法」であり、漏れなくダブりなく分けることを意識する必要があります。 MECE法の具体的な手法を学ぶ MECE法には次の3つの方法があります: 1. 層別分解:全体を定義して分ける(例:単価別、年代別) 2. 変数分解:一つの数字に対する変数を分ける(例:売上=客数×単価) 3. プロセス分解:分析対象の事象に関する全体のプロセスを考えて分ける(例:来店→注文→食事を運ぶ→食べる→会計→退店) 分解スキルの課題と対策 私はこれまでMECEの概念は知っていましたが、特に分け方がうまくできないと感じていました。上記の①〜③の手法を知ることができたのが一番の収穫でした。また、「他には?本当に?」と問いかけることで、分解の妥当性を検証することも重要だと感じました。 解約要因とその分析法は? 解約要因の分析: - 層別:子どもの年齢別、親の年齢別、世帯年収別、利用回数別、子どもの人数別 - 変数:アプリ利用状況=利用頻度×利用ゲーム数×1ゲームあたりの利用時間 - プロセス:契約→初期設定→初回利用→2回目利用→解約までの利用状況→解約→再契約 変数分解スキルを向上させるには? 変数分解のスキルアップ: 私は比較的容易に層別やプロセス分解の案は出せましたが、変数分解が特に苦手だと感じました。そのため、業務内外を問わず、日常生活で目にする数字を構成する変数が何かを1日に最低1つは考えていきたいと思います。具体例はすぐに思いつかなかったので、他の受講生の投稿や知人とのコミュニケーションを通じて課題を見つけていきたいと思います。 クリティカルシンキングを強化する クリティカルシンキングの基本姿勢: - 分解の切り口を検討する際に3つの視点を変えてみる。 - 出した結果に対して「なぜ」「本当に」「他には」という問いかけを行う。

クリティカルシンキング入門

グラフが語る学びの転換点

グラフ活用は効果的? データを加工する際、グラフの持つ威力を改めて実感しました。単なる表では見えにくかった傾向が、グラフにするだけで一目で把握できるということが分かりました。特に、強調すべき大きな傾向に矢印などを加えて示すと、視覚的なインパクトが増し、情報に説得力が出ると感じました。 切り分けのコツは? また、どのように切り分ければ傾向が明確になるのかは、実際に手を動かして試行錯誤することでしか掴めないことが分かりました。年代別やキリの良い数値で区切るだけでなく、定性的な仮説を立てながらいろいろな切り口を試してみることが、より正確な情報整理につながると実感しました。 複数角度で見る? 数値そのものだけでなく、率を用いて見ることも非常に重要です。一つの切り口に頼るのではなく、複数の角度からデータを分析することで、より解像度の高い情報が得られる可能性が広がると考えています。 分析が楽しいの? 以前は、数字やデータ分析が苦手だと感じ、グラフ化するのにも抵抗がありました。しかし、実際にグラフにすることで情報が整理され、意外にも分析が面白いと気付くことができました。面倒な作業と感じていた部分が、より良いアウトプットへとつながる大切なプロセスだと認識できたのは大きな収穫です。 資料作成は説得力? 顧客への業務報告や来年度の予算提案の際に、グラフ化したデータを根拠として示すことで、自社の貢献度や改善点を明確に伝えることができます。視覚的な効果や率を意識することで、顧客の意思決定をサポートする説得力ある資料作成に役立っています。 目的は伝わる? これまで、前例をそのまま踏襲するだけで、資料作成自体が目的化してしまい、伝えたい内容が不明瞭になっていた部分がありました。今回、グラフをどのように切り出し、どのように見せるのかと改めて考え直すことで、伝えるべき本来の目的に立ち返る必要性を感じました。 再確認の方法は? 今週は、過去に提出した業務報告書を振り返り、各ページで何を伝えたいのかを再考する作業を行う予定です。皆さんも、資料作成が目的化してしまい、本来の伝えたいメッセージが薄れてしまう経験はありませんか? もしあれば、どのようにして本来の目的を再確認していますか。

アカウンティング入門

B/Sで読み解く企業の秘密

B/Sの違いをどう見る? B/Sについては、これまで業務の中で目にする機会が少なかったため、活用するチャンスがなかったが、今回のゲイルや総合演習を通して、PLとの関連性と役割の違いを認識し、企業を多角的に見るツールであることを実感することができた。特に、インフラ産業とクラウドビジネスのB/Sを比較する中で、インフラ産業は車両や駅舎、電線設備などの有形固定資産を多く保有(70%以上の割合)し、成熟した産業であるため負債が大きくなりがちである一方、クラウドビジネスは店舗や設備を必要としないため有形固定資産が少なく、新興の産業故に負債を抑え、純資産が大きい傾向があるという違いが明確に理解できた。 負債運用の意味は? また、アキコの事例を用いたゲイルでは、「負債」の考え方について学ぶことができた。負債を極力抑える運用の重要性と、成長のチャンスを逃さないために時には必要な負債が発生するという現実も示され、安定した企業は負債が大きくなりやすい一方、個人で事業を展開する場合は負債を小さくしておくのが望ましいという点を考えさせられた。B/Sは、お金の「調達」と「使途」のバランスを把握できる資料として、企業の成り立ちそのものを理解する上で非常に有用であると感じた。 自社B/Sの現状は? まずは、自身の会社のB/Sを確認し、分析を行うことが必要だ。現状を正しく把握し、運営上の数値管理のために何を追うべきか、またどの点に注力するかといった運営上の課題を明確にすることに役立てたい。同時に、他社のB/Sを読むことで成り立ちの違いを理解し、自社の今後の戦略について考える材料にしたい。 業界分析はどう進む? さらに、薬局業界で公表されているB/Sを確認し、流動資産、固定資産(有形固定資産、無形固定資産)、流動負債、固定負債の各項目とその組成について把握する。そして、自社のB/Sを見直し、企業の成り立ちや現状を正確に把握することが求められる。現在、5月に実施予定の管理者向け研修資料作成にあたり、財務三表について分かりやすく噛み砕き、自社の状況と外部環境を具体的に受講者に説明できるよう、PLやB/Sを再度読み直し、情報の整理を進めていく。こうした人に教えるプロセスを通じて、知識の定着を図っていきたい。

データ・アナリティクス入門

目的設定から始まる分析の旅

分析前に何を考える? 分析を始める前に、目的や仮説を明確に設定することが基本です。その上で初めて実際の分析に着手できます。データの加工については、AIの活用が効果的ですが、なぜそれを行うのか、また結果がどうであるのかという点については、人の意見が重要だと感じています。これまでの業務では、見やすさやわかりやすさに時間をかけすぎ、本質的な問いに対する回答が十分でなかったと実感しています。 定量データの違いは? 定量データには様々な種類があり、平均値を算出することが有意義な場合とそうでない場合とがあります。直感的には理解できるものの、理由を問われると具体的な説明が難しいこともあります。質的なデータか量的なデータかという違いよりも、それぞれの特徴をしっかりと認識しておくことが大切です。 条件比較、何を見る? データの比較を行う際は、本当に同じ条件で比較できているかどうかを確認する癖を身につける必要があります。なぜ複数のデータを比較するのか、比較から何が読み取れるのかを常に考えることが求められます。例えば、既存店舗における業績、顧客属性、サービス満足度のデータを用いる場合、その店舗の改善ポイントや、他店舗で活用できる内容を明らかにすることが重要です。また、将来予測に際しては、既存店舗のデータ分析が正しく目的を果たし、正確な判断につながることが、1年先の店舗運営における仮説や予測の精度向上、そしてリスクヘッジに直結すると考えています。 会議で何を共有? 会議や立ち話などの中で分析に関する話題が上がった際も、まずは紙一枚に目的、期間、どのようなデータが必要か、既存のデータなのか、どの部分から入手可能かをまとめることが大切です。その上で、依頼者と意見をすり合わせながら進めることが効果的です。 定性データは役立つ? また、定性データの活用についても重要な視点です。仮説設定の根拠や課題確認のため、まずは定性データに目を通す機会を十分に設けることが求められます。 AI活用の注意点は? 現時点では、AIの活用は基本的に注意が必要ですが、関係のない自作データなどを用い、どのようなデータの見せ方が効果的かを試行するなど、活用の視点から取り組んでみると良いと感じています。

データ・アナリティクス入門

仮説とデータ収集の極意に迫る

複数仮説をどう活用する? 仮説を考える際には、「複数の仮説を立てること」や「仮説同士に網羅性を持たせること」が重要です。その上で、仮説を検証するために必然的にデータを収集することが求められます。ケースの解説では「3C」「4P」が挙げられており、私が考えたケースの回答も結果として「4P」の視点に近かったですが、意識的に「4P」から発想したわけではありませんでした。どの場面でどのフレームワークを使用するべきか、まだ身についていないと感じましたので、今後はフレームワークを有効に使えるようにしたいです。 データ収集のポイントは? データ収集の際にも、仮説を持った上で臨むことが重要だと再認識しました。例えば、故障対応の増加で残業が増えているという問題に対して、「昨年と今年の故障件数」の比較ではなく、「1件あたりの対応時間」を比較する方が良いという解説を受けて、その認識が強まりました。 日常業務での仮説と分析 仮説を考え、必要なデータを収集し、分析することは日常業務のあらゆる場面で必要です。具体的には、「毎月の財務諸表の比較分析」、「毎月の営業活動の振り返り」、「毎週のユーザー数の動向分析(新規獲得率、解約率、更新率)」などが挙げられます。 中長期的視点での活用法 また、中長期的な視点を持つ業務では、年間の目標設定やその達成に向けての方法を考える際、中期的なビジョンを考える際に、フレームワークの活用が有効です。特に中長期的な視点では、その活用をより一層進めていきたいと思います。 データ自動化とフレームワーク整理 日常業務で必要なデータ収集は現時点では自動化されていますが、収集されたデータに漏れがないか、今一度チェックすることが大切です。また、仮説を立てる際にはフレームワークの活用が有効と感じていますが、どの場面でどのフレームワークが有効かを一度整理したいと思います。そのために、フレームワーク集の書籍を手元に置いておく、もしくはChatGPTにどのフレームワークを使うかを尋ねるという方法も考えています。 独自視点はどう持つ? ただし、フレームワークに頼りきりになると内容が似たり寄ったりになりがちですので、常に独自の視点がないかを意識していきたいと思います。

戦略思考入門

未来を切り拓く戦略のヒント

未来をどう描く? 今週の学習で強く印象に残ったのは、戦略思考の本質が「未来を描き、逆算して今を選択すること」にあるという点です。戦略は単なる計画ではなく、最終目標を明確にし、それを達成するために必要な行動を整理する思考方法だと理解しました。特に「何をすべきか」「何を捨てるべきか」、そして「現状で不足しているものは何か」を見極めることが重要です。また、戦略思考には変化に対応する柔軟性も求められ、環境の変化や予期せぬ状況に備えて複数のシナリオを想定しておくことが不可欠だと感じました。この学びは業務のみならず、キャリア設計にも直結しており、10年後の自分を見据えた上で、今どのような挑戦をすべきかを考える枠組みとなっています。戦略思考を身につけることで、目的があるからこその選択を行ったと説明でき、意思決定に対する自信も深まると実感しました。 情報整理はどう? 今週学んだ戦略思考は、複雑な判断や情報の選別が求められる業務で有効だと感じています。特に、最終目標に向けて必要な要素を整理し、優先順位を決定する場面において効果を発揮すると考えます。例えば、情報収集や分析の際には、すべてのデータを集めるのではなく、目的に直結する情報を見極めることが大切です。また、環境変化や予期せぬ事態に備えて複数のシナリオを準備し、柔軟に対応することも必要です。具体的な行動としては、まず最終目標を明確にし、その達成に必要な要素を整理します。次に、「何をすべきか」「何を捨てるべきか」「現状で不足しているものは何か」を洗い出し、行動計画に落とし込むことが求められます。さらに、定期的に現状を振り返りながら仮説を検証し、計画を修正することで柔軟性を確保できます。 独自性の見つけ方は? また、今回の学びで「独自性(強み)を持つことの重要性」が心に残りましたが、自分自身の独自性を具体的にどう分析するか、その決め手となる視点がどこにあるのか、疑問も残りました。戦略思考の型は理解できたものの、具体的に自分に引き寄せる際にどの視点や方法で強みを見つけるべきかを知りたいと思います。他の受講生の皆さんがどのように自分の独自性を見極め、業務やキャリアに活かしているのか、その具体的な取り組みについて議論できればと考えています。

戦略思考入門

市場の変化に対応するための柔軟な思考法

柔軟な発想を持つ重要性 物事や概念に固執しすぎないことを常に意識しています。特にライバルに対抗しすぎると、偏ったアイデアしか生まれないため、柔軟な発想を持つことが重要です。フレームワークを用い、多くの人と抜けのないアイデア出しを行うことが肝要です。 常に競争優位性を意識するには? 市場は常に変化するため、最初の計画段階からImitabilityがあるかを考え、戦略に固執せずに常に競争優位性を意識しています。ベストな方法は常に変わると考え、多方向から物事を捉えるべきです。提出や報告前には必ず別の捉え方や考え方がないか確認しています。 海外進出での強みをどう活かす? 業務内容においては、海外進出拠点のVrio分析やフレームワークを活用して、新市場での自社の強みや差別化を図っています。また、ポーターの基本戦略3要素に関しても、それぞれにリスクがないかを確認します。競合他社の差別化戦略をフレームワークで分析することも行っています。 キャリアの差別化戦略は? キャリア面では、自分の差別化戦略を考え、どの部署で自分の強みを発揮できるか、また母数が大きいかを見極めています。 思考を整理するためには? 日々の業務面では、計画の段階からフレームワークの使用をファーストステップとし、論理的に考えを整理する思考プロセスを身に付けることが必要です。報告や発表前には自問自答し、抜けがないかを確認しています。また、多くの打ち合わせに参加し、事業の進捗状況に常に気を配るよう心がけています。市場は変動し、自分のやり方も古くなることがあるためです。 事業戦略で広い視野を持つ 事業面では、進出前・進出後に市場の動向に気を配り、売り上げが安定しているからと安どせず、常に他の戦略を模索する広い視野を持つようにしています。 自分の価値をどう評価する? キャリアに関しては、まず自分の価値をVrio分析で評価し、組織や社会のVrioも分析します。自身がどこで尖っていけるかを考え、その成長戦略ルートを検討します。 メモを取ることの重要性 最後に、メモを取ることは非常に大切です。アナログな方法でも自分の思考キャパシティー的に必要なので、無理にでも癖づけるようにしています。

クリティカルシンキング入門

分解のコツをつかむ!自ら動く学び方

「分解」とは何か? 物事を正しく理解するためには、「分解」が欠かせません。正しく分解するためには、「MECE(モレなくダブりなく)」な状態を維持することが重要です。「分解」は一見難しく思われるかもしれませんが、Who・What・When・Whereの視点で考えると、整理がしやすくなり、MECEの状態かどうかの判断も容易になります。 手を動かして得られるもの まずは実際に手を動かして「分解」を試してみましょう。仮に何も見えてこなかったとしても、それ自体に価値があります。「何も見えなかった」という事実を知ることも重要だからです。一工夫を加えながら手を動かし続けることが、「分解」するうえでの大切なプロセスです。 全体を定義する必要性は? 「分解」に着手する前には、必ず「全体」を定義し、それを周囲と共通認識とする必要があります。全体が定義されていないと、Aさんは2020年の顧客、Bさんは2021年の顧客というように、対象のズレが生じてしまいます。 分解が研修設計に役立つ理由 例えば、研修を設計する際にもこの方法が活用できます。「目的」を達成するために受講対象者という「全体」を定義し、Who・What・When・Whereの視点から分解していくことで、研修設計がスムーズに進みます。 売上予算管理でも「分解」は効果的 また、売上予算管理の場合、売上をどの要素が構成しているのかを分解し、チーム全体で共通認識を持つことが重要です。共通認識ができれば、予実差異を分析するときに問題の所在が分かりやすくなり、原因と対策の立案までのスピードが向上します。 議論が必要な場合の全体定義 議論が必要な場合、対象となる「全体」を定義してから話し合うことが重要です。問題が発生したときに、どこからどこまでの業務を対象とするのかを明確にしないと、議論が発散し収束しにくい傾向があります。 業務設計改善の出発点は? 売上を「分解」する際にも、事業部内で売上がどの要素で構成されているのかを洗い出し、チームの共通認識とすることが重要です。また、業務設計の改善においては、業務フローを書き出し、どの範囲を議論の対象にするのかを明確にするところから始めるべきです。

データ・アナリティクス入門

ロジックで切り開く未来への一歩

どこに問題ある? 問題を明確にするため、まずはプロセスごとに分解し、どの段階に問題が存在するかを捉えます。具体的には、What(問題の明確化)、Where(問題箇所の特定)、Why(原因分析)、How(解決策の立案)の4つのステップに沿って検討します。ロジックツリーを活用することで、体系的かつ効率的に思考を進め、見落としのない分析が可能となります。また、全体を複数の部分や変数に分解する層別分解も有効です。 仮説はどう広がる? ライブ授業では、既に把握している内容を元に分解を進め、仮説を複数立てて何を明らかにするかを検討していきます。グラフなどで可視化し、重点的に見るべき箇所を明示することで、ストーリー性を大切にしながら分析を進めています。仮説を広く立て、可能性のある原因を網羅的に洗い出す点がポイントです。 日常分析の実践は? 日常の分析業務では、ロジックツリーを活用したプロセス分解がまだ十分でないため、正確な分析を目指す実践に取り入れています。解決の4ステップに従って、原因追及だけでなく提案まで行うことを意識し、当たり前のことにも疑問を持ち「なぜ」を繰り返すことで、自然とできるようになるまで継続していく所存です。 スキル習得はどう? 今後は、データ分析に必要な専門スキルの習得にも力を入れていきます。たとえば、SQLは毎朝の学習を継続し、プログラムや統計学、機械学習については、講座終了後に専門スクールで集中的に学んでいく予定です。 フィードバックは大切? さらに、依頼された分析だけでなく積極的にデータ分析に取り組み、上司や同僚からのフィードバックを得ることで自らのスキル向上を図ります。日次、週次、月次のKPI目標の振り返りを行い、要因分析にはロジックツリーやMECEを用いてプロセスを分解し、より正確な分析を実践していきます。 情報共有は進んでる? また、分析に必要な情報収集のため、自組織や他部署のメンバーとの密なコミュニケーションを重ねながら、Webマーケティングやデータに関する知識の習得にも取り組みます。これらの活動を具体的なスケジューリングに落とし込み、着実に専門知識を身につけていきたいと考えています。

デザイン思考入門

問いかけが育む共感の力

顧客の悩みは何? 業務でサービス開発に取り組む中、ターゲットとなる顧客にインタビューを実施し、悩みや課題を洗い出しながら、そこから得られるインサイトや示唆を導き出しています。これまでは感覚的に共通項や心理を見出していたものの、以下の問いを設定して進めることで、思考が一層明確になると感じました。 ・顧客が感じている悩みは何か? ・その背景にある思考や本能は何か? ・この思考に至る組織的な制約条件(評価や文化など)は何か? ・最終的に、根本課題や真因は何か? AIはどう評価? AIコーチングからは、顧客インタビューを通じて課題やインサイトを探るアプローチに対して高い評価が寄せられています。明確な問いかけを用いることで思考が深まった点は大いに評価できる一方、さらに具体的な顧客事例や背景を考察することで、理解がより深まる可能性が示されています。 解決策は何? また、以下のような問いも提示されました。 ・インタビューで見つけた顧客の悩みの根本原因に対して、どのような解決策が考えられるか? ・提示された「課題定義」の5つのポイントはどのように活用されているか? このような追加の問いかけを通して、顧客理解をさらに深めるために、さまざまな視点でのアプローチを試みることが大切であると感じます. 今回、提示された4つの問いで思考を巡らせた結果、提供価値に直結する良い結論(真因)を導き出すことができました。ただし、試行は一度に留まっているため、今後はさらなる改善を図っていきたいと考えています。背景にある思考や本能、さらには組織的な制約条件を探ることが「共感」に繋がるのではないかと感じています。 分析方法は? また、定量分析と定性分析についても再認識する機会となりました。課題定義フェーズでは定性分析を重視し、定量は仮説の立証に活用するという考え方です。「根本課題・真因」を考える際には、背景にある思考や本能、そしてそれに影響を与えた組織的な制約条件(評価や文化など)を深く掘り下げることが、インサイトの導出に繋がると感じます。言うは易く行うは難しいですが、意識的に構造化して思考を働かせ、今後も実践していきたいと考えています。

「分析 × 業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right