データ・アナリティクス入門

検証と比較で広がる学び

分析の目的は何? 分析の本質は比較にあると実感しています。何のために分析を行うのか、もう一度立ち返り、プロセス、視点、アプローチを意識することが大切です。複数の仮説を立て、様々な切り口から問題にアプローチすることで、見落としがちな問題点も網羅することができると感じます。 データ分布はどうなって? 全体像を把握するには代表値の比較が有効ですが、同時にデータの分布がどのようになっているかもしっかりと確認する必要があります。抜け漏れがないか、条件反射に頼らずに注意深くチェックすることが肝心です。また、標準偏差の変動は、株のボラリティに似た感覚で捉えています。 検証の手順は? 仮説は何度も繰り返して検証すべきで、すぐに答えを出さず、切り口に抜け漏れがないかを再点検することが重要です。問題点を明確にするためにはデータを見える化することが効果的で、これによって次のアクションやステップを取りやすくなります。データの判断目的やその見せ方にも気を配る必要があると感じます。 打ち手の成果は? 特に、ある動画で打ち手の費用対効果について触れられていたことが印象的でした。これまで「どの打ち手を優先するか」が重要だとは考えていましたが、実際にその打ち手を実施した際のリターンまで考えるという視点は、私自身の経験上、一度も考えたことがありませんでした。ファイナンスの考え方であり、その入り口ともなる新たな発見に、深く感謝しています。 時間の使い方は? また、他の社員より明らかに時間を要している業務があると感じています。正直なところ、その業務が自分に向いていなかったり心理的に好ましくなかったために、時間がかかると言い訳をしていた自分がいました。しかし、他者との比較を通して、行動前の準備段階で何か問題があるのか、結論から逆算するなど、対策案の仮説やシミュレーションを実際に試している最中です。 改善策はどうする? 現状をしっかりと把握し、問題点を見つけるとともに、どのような状態にすべきかを工程を逆算しながら検証しています。苦手な業務の改善につなげるため、うまくいかなかった場合はさらなる仮説を立て、柔軟に対応していくつもりです。

戦略思考入門

経営戦略を学び、実務で活かす方法を見つけた!

経営戦略の全体像とは? 企業が持続的な競争優位を確立するために必要な経営戦略について学んだことが、この講座全体を通じて最も印象に残りました。経営戦略の全体像や競争優位性を築くための重要な要素について、深く理解することができました。特に、経営戦略の立案プロセスにおいて、事業環境や自社の状況を分析し、解決策を策定するための基礎理論やフレームワークを学べた点が大変有意義でした。 分析から得た学びは? 経営理念やビジョンが事業の始まりであり、これを基に業界分析やマクロ分析、外部内部分析、環境分析を行うことで、自社の成功要因を見極めることの重要性を再認識しました。また、バリューチェーンの把握と必要に応じた改善や再構築の重要性についても学びました。現状の市場地位で自分の立場を理解し、必要に応じて戦略を改善することも重要です。 知識をどう活かすか? 今回の講座で学んだ内容は、経営企画室で勤務している私にとって多岐にわたる場面で活用できると感じています。経営戦略の立案プロセスにおいて、事業環境や自社の状況を分析するための基礎理論やフレームワークを学んだことは、日常業務に直結します。例えば、新規事業の立ち上げや既存事業の見直しを行う際に、業界分析やマクロ分析、外部内部分析、環境分析を用いて、より精緻な戦略を策定することができると思います。 実務での具体的行動は? 全体の講座で得た知識を実務に活かすため、以下の具体的な行動を取ります。まず、業界分析やマクロ分析を定期的に行い、最新の情報をフィードバックします。次に、SWOT分析やPEST分析を活用し、自社の強み・弱み、機会・脅威を明確にし、具体的な戦略オプションを提案します。また、バリューチェーンの最適化により、各部門の業務プロセスを詳細に分析し、無駄を排除して効率化を図ります。そして、チーム内のコミュニケーションを強化し、定期的なミーティングやフィードバックを実施します。 成長するためのステップは? 最後に、ネットワーキングを活用し、業界イベントやセミナーに参加して新たな知識や人脈を得たいと思います。専門書やオンラインコースを通じて自己学習を継続し、知識をアップデートします。

データ・アナリティクス入門

理想と現実を繋ぐ数値の声

あるべき姿って何? 今までは「あるべき姿」を、漠然と「ありたい姿」と「正しい状態」の二つの意味で使い分けずに運用していたことに気づきました。しかし、その区別を認識したことが今後の分析にどのような影響を与えるのか、正直なところ分かりません。今後その機会が訪れるのか疑問に感じています。 また、あるべき姿として何を設定するかを考えた時、以前はただ漠然と「こうなればいいな」と思う程度で、例えば急降下するグラフの曲線が鈍化すればよいという認識に留まっていました。今後は、より定量的に表現できる方法を検討していきたいと考えています。 早帰りは何故? 人の管理において、業務終了時間が18時であるところ、早帰りが認められている場合、退社が17時になると、早帰りする人は17時前に業務終了の準備に取り掛かり、17時ちょうどに退出するケースも出てきます。そのため、17時前のお客様からの問い合わせに十分に対応できず、お待たせしてしまう場面があるのです。 解決へ向かう道は? この課題を関係者間で合意のもと解決するためには、現状として17時前に何人が業務を離れているのか、またその時間帯にどの程度の問い合わせが発生しているのか、そしてその問い合わせにどの程度対応できれば問題ないのかといった、正しい状態を定量的に示す必要があります。これを踏まえ、現状を関係者間で共有し、合意形成を行った上で、解決手段を検討していきたいと思います。 まずは現状分析として、以下の点を把握する必要があります。 ① 17時前の人数 ② 17時後の人数 ③ ①と②の差から算出される早帰り人数(すなわち、17時前における作業可能人数の減少) これらのデータや、該当する時間帯の問い合わせ件数を数週間にわたり収集し、現状を明確にします。その上で、現状と理想の正しい状態が何かを議論し、あるべき姿を決定します。そして初めて、どのように問題を解決するか(how)の議論に入ることができると考えています。 これまでは、関係者間で現状のすり合わせを十分に行わずに解決策(how)のみを議論していた点を反省し、今後は一歩ずつ着実にステップを踏んで進めていきたいと思います。

データ・アナリティクス入門

振り返りに潜む解決のヒント

問題解決の始め方は? 問題を解決するためには、まず「何が問題か」を明確にし、「どこで」発生しているのかを特定します。その上で、原因を分析し、解決策を考えて実行するという4つのステップ(What、Where、Why、How)を意識することが大切です。 状況把握のコツは? また、状況を整理するためのツールとして、3C(顧客、競合、自社)や4P(製品、価格、販売場所、宣伝)を活用する方法があります。これらのツールを用いると、事業の強みや改善すべき点がより具体的に見えてきます。 仮説は何故必要? 問題の原因をつかむには、一つの仮説に絞るのではなく複数の仮説を立てることが有効です。異なる視点から仮説を構築し、その後に実際のデータを収集して検証することで、問題を多角的に理解し、正確な解決策に結びつけることができます。 データはどう取得? データ収集においては、信頼できる情報源から、偏りのない意見を得る工夫が求められます。誰に、どのように質問するかを工夫し、整理したデータをもとに検証を進めることで、反論を排除しながら正確な分析が可能となります。 相談対応はどうする? 実際の業務では、他部署から「業務がうまくいかない」という相談を受けることがあります。そうしたときは、まず問題の所在を整理し、どこでどんな問題が発生しているのか、またその原因を明らかにします。そして、仮説を立てた上でデータ収集と検証を行い、説得力のある解決策を提案できるように心がけています。 体制強化はどう考える? 日常の業務において、問題解決の4ステップを意識的に実践し、仮説を立ててデータに基づいた検証を行うことで、より効果的なサポート体制を構築できると実感しています。また、3Cや4Pなどのツールを定期的に活用し、背景や業界の状況を把握しておくことも、今後の課題解決に大いに役立つと考えています。 振り返りの秘訣は? 最後に、解決策を実施した後は、その結果を振り返り、どのステップや仮説が効果的だったのかを検討することが重要です。これにより、次回の対応に向けた改善点を明確にし、継続的なスキル向上につなげることができると思います。

データ・アナリティクス入門

ナノ単科で挑む仮説の実践

仮説って何? ビジネス現場での仮説とは、ある論点に対する暫定的な答えを示すものであり、大きく「結論の仮説」と「問題解決の仮説」に分けられます。状況に応じて、過去・現在・未来それぞれで仮説の内容が変わる点も特徴です。 解決と結論は? 問題解決の仮説は、具体的な課題に対して原因を究明するためのものです。一方、結論の仮説は、たとえば新規事業においてある論点への暫定的な答えを示す際に用いられます。 4ステップの流れは? 問題解決のプロセスは、次の4つのステップで進めます。まず、Whatとして問題が何であるか、またその規模を把握します。次にWhere、すなわち問題の所在を特定します。その後Whyとして、なぜその問題が発生したのか原因を追及し、最後にHow、どのように対策すべきかを検討します。 仮説はどう練る? 仮説を立てる際には、決め打ちせず複数の仮説を考えることが重要です。異なる観点や組み合わせから仮説を立てることで、情報の扱いに網羅性が生まれ、柔軟な解決策を導く助けとなります。 現状把握は大事? 施策の検討では、すぐに解決策に飛びつかず、まずは現状を十分に把握することが求められます。たとえば、見込み顧客を効率的に集めたい場合、SEO対策やウェビナーをすぐに試みるのではなく、なぜ見込み顧客が増えないのか、実際に問い合わせをしてくれる顧客の層やニーズを確認した上で仮説を立て、ABテストなどで検証するプロセスが大切です。 営業仮説の効果は? また、営業面においても、現状の状況・業務上の問題・その影響、そして解決された場合のメリットを問い直すことで、仮説の思考は効果を発揮します。これは、営業メソッドであるSPINの各質問(状況質問、問題質問、示唆質問、解決質問)とも通じる考え方です。 顧客行動はどう見る? さらに、顧客の行動分析の際は、カスタマージャーニーマップを作成するにあたって、こちらの期待する行動ではなく、顧客のインタビューを通じた実際の行動パターンをデータ化・可視化し、どのステップで課題が生じているかを明確にすることが重要です。

クリティカルシンキング入門

「データ分解術で見つけた新たな視点」

情報を分解する重要性は? 情報を分解することによって、情報の解像度が向上します。データを加工するときには、以下の点に注意すると良いです。 まず、与えられた表をそのまま見るのではなく、全体を把握するために自分で欄を増やす工夫をしましょう。さらに、絶対値だけでなく相対値も見ることが重要です(比率に注目する)。数字はグラフにできると、その情報の威力が増します。「眼に仕事をさせる」ことがポイントです。 データの区切り方で何が変わる? データをどのように区切るかによって、解釈が変わってきます。刻み幅によって、分布の見え方が変わるため、どのような分け方が良いかをいくつか試行錯誤する習慣を身につけることが大切です。どのくらいの刻み幅にすれば良いかだけでなく、どのように区切ると意味を持つかを仮説として考えることが重要です。また、分解の際には多様な切り口を考えてみることが必要です。ある切り口では特徴的な傾向が見えなくても、別の切り口では見えることがあるため、複数の切り口で分解してみることが有益です。 まずは「全体」を定義することが重要です。 セミナー結果の詳細分析法は? セミナーや研修の参加者アンケートの結果を分析する際には、表面的な結果だけではなく、"when"、"who"、"how"など、多くの切り口から分解して内訳をしっかり確認します。2つ目、3つ目の傾向がないか意識しながらデータ分析を行うことが求められます。 業務報告はどう改善すべき? 月次の業務報告作成の際には、集計したデータをグラフ化し、表の状態では見えなかった傾向がないかを確認するようにします。データをどこで区切るか、どのように切ると意味を持つ切り方になるかを仮説立てて試してみることが大切です。 今年度のセミナー内容を企画・提案する際には、過去数年分のテーマと参加者アンケート結果を比較して、どのようなテーマがどの属性の参加者に反応が良いのかを分析します。その結果をもとに、今年度の企画案を作成します。また、業務報告を作成する際には、これまで毎月固定の項目の傾向分析・報告だけを行っていましたが、次月以降は新たな切り口での分析を1つ以上追加して報告する予定です。

戦略思考入門

学びが業務を変える戦略の力

戦略の全体像は? 戦略的思考入門の研修を通して、企業が長期的に価値を生み続けるための「構造的な考え方」を学ぶことができました。経営理念やビジョンを出発点とし、企業が向かう方向性を定め、それを実現するための経営戦略がどのように位置づけられるのか、全体像を体系的に理解できたのが印象的です。 外と内の分析は? 研修では、まず外部環境と内部環境の分析の重要性を学びました。PEST分析、5つの力、3C・SWOTやアドバンテージマトリクスといったフレームワークを用いることで、機会や脅威、そして自社の強みや弱みを構造的に把握する手法が理解できました。また、規模の経済性、不経済性、密度・範囲の経済性、経験曲線といった概念により、事業の継続性や収益性に影響するメカニズムについての理解も深まりました。 技と強みの応用は? さらに、バリューチェーンの再構築、基本戦略やコアコンピタンス、事業ポートフォリオ分析など、競争優位を生み出す視点も学ぶことができました。これらの知識は、特にITシステム開発において自社の技術力や強みを活かし、どの部分で差別化を図るべきかを考える際に大いに役立つ内容だと感じました。 分析が導く方向は? 実際の業務では、外部・内部環境の分析が担当プロジェクトの目的設定や新規案件の提案などに直結しています。例えば、PEST分析や5つの力を通じて業界動向や競合状況を把握することで、開発する機能やその優先順位を戦略的に判断できるようになりました。また、3C・SWOTを活用してプロジェクトの方向性や自社サービスの改善点が明確になるとともに、規模や範囲の経済性を念頭に置いた効率化や再利用性の検討も進めやすくなりました。 日常業務はどう変わる? この学びを通して、日常の業務が単なる作業ではなく「戦略につながる活動」として意識できるようになりました。プロジェクト開始時の簡易SWOTの作成、定例会での外部環境の変化共有、開発標準や再利用可能な仕組みの提案、ナレッジのドキュメント化、さらには顧客に最も付加価値を提供できる工程への注力など、具体的な行動へと結びつけることができた点に大きな変化を感じています。

アカウンティング入門

丸亀製麺で紐解く企業の数字

財務はどう活かす? 本日の学習では、財務数値を単なる数字として覚えるのではなく、ビジネスモデルやオペレーション、経営判断と結びつけて考える視点が深まりました。 丸亀製麺の分析は? Gailの問5に取り組む中で、丸亀製麺を題材に、店舗設備、原材料、人件費、メニュー開発、立地など、企業活動の各要素に着目して分析する練習ができました。それぞれの活動にどの程度のコストがかかり、その補填にどのような資金調達が必要なのかを構造的に考えることで、PL・BS・CFが企業の動きを反映した仕組みとして理解できるようになりました。 分析フレームワークは? また、企業を分析するための有効な思考フレームワークも身につけることができました。特に以下の点が印象に残りました。 ■バリューチェーン  企業の業務を活動単位に分解し、どこでコストが発生しているのかを整理する手法。 ■コスト構造(固定費 × 変動費)  各費用が重いのか軽いのかを判断するための基準となる。 ■軽資産モデル vs 重資産モデル(BSの視点)  企業のリスク構造、競争力、そして資金調達の方針の違いを読み解くための視点。 フレーム連携の効果は? これらのフレームワークを組み合わせることで、たとえば、丸亀製麺と他の類似企業との違いや、先日の例であるANAとZOZOの資産構造の違いを財務視点で比較する力が養われました。総じて、企業活動からコスト構造、そして財務数値へとつながる流れを考え、分析フレームワークを活用して整理する技術が大きな学びとなりました。 今後の実践はどう? 今後は、今回学んだ「ビジネスモデル → コスト構造 → 財務数値」のつながりを、研修設計やクライアントへの提案に積極的に取り入れていきたいと考えています。さらに、人事・組織の施策がPLやBSに与える影響を説明できるよう、説得力を高めるために、以下の3点を実践する所存です。 ①事例企業を分析する際に、まず活動をバリューチェーンで分解する習慣をつける。 ②固定費と変動費の構造を意識して見る。 ③軽資産/重資産モデルの違いを踏まえ、企業の強みとリスクを整理する。

データ・アナリティクス入門

分解思考で掴む未来へのヒント

理想と現実の違いは? 問題定義については、常に「あるべき姿」と現実とのギャップを意識し、そのギャップを埋めるために関係者と共通認識を持つことが重要だと感じました。 分解法の違いは? ロジックツリーには、「層別分解」と「変数分解」が存在します。私自身はこれを「足し算分解」と「掛け算分解」と表現しています。加えて、感度の良い切り口を多数持っておくことも大切ですが、これが自分の長年の課題となっています。 大枠から取り組むのは? 問題分析を行う際は、まず大きな枠組みから着手することが肝要です。私は計数業務や人材育成、組織開発を担当しているため、さまざまな場面でこのアプローチを用いています。 評価の焦点は? 具体的には、売上や予算を検討する際には、分解を通じて問題の大きさや影響範囲を特定するよう努めています。また、人材育成の方法を考えるときには、何が効果的かを明確にするために要素を分解し、議論を深めています。 要因の絞り方は? さらに、組織の問題に取り組む際は、組織のありたい姿を定義した上で問題を分解し、その要因候補を絞り込む作業を重ねています。 成果物はどう捉える? また、業務のアウトプット分解についても考えさせられます。業務を成果物と、それを生み出すアクションに分解し、受け取り手の観点から何が必要かを吟味することが、業務完了に向けた重要なポイントだと感じています。 分類項目のコツは? 売上や予算の項目に関しては、適切な分類項目の設定が、事業の推進状況を的確に把握するために役立つと考えています。 育成理論を再検討? 人材育成の観点分析では、人の性質や評価の項目化は進んでいる一方で、育成方法論についてはまだまだ整理の余地があるように思います。ここでは、「When」や「Where」といった切り口で新たな項目化ができる可能性があると捉えています。 数値評価の意義は? 最後に、組織の問題分析では、定期的な組織評価の数値を基に、課題項目がどの要素や要因に分解されるのかを試行することが、今後の改善に向けた有効な戦略であると感じています。

マーケティング入門

「顧客視点で売る戦略を学ぶ」

どのようにマーケティング戦略を変えるか? Week.01からの学びを通じて、「何を売るか?」から「誰に売るか?」という流れを一連のプロセスとして把握することができました。ニーズを正確に捉え、「何を売るか」を明確にすることが大切です。そして、提供価値を創造し、「勝てる市場」で「誰に売るか」を明確にすることが求められます。 顧客視点を活かした分析とは? 「何を売るか?」や「誰に売るか?」を決定する際には、細やかで論理的な分析が必要です。また、カスタマージャーニーをじっくり行い、エスノグラフィーを通じて顧客の視点や声を拾い続けることも重要です。ソフトとハードの両面から多角的に捉え、活路を見出していく姿勢が求められます。 想定外の顧客層をどう捉える? また、既存の自社製品やサービスが想定した顧客以外に支持されることもあります。思い込みや固定概念にとらわれず、柔軟な発想をすることが大切です。そのために、定期的に振り返りと分析を行い続けることが必要だと感じました。 軌道修正の重要性とは? さらに、分析や切り口を誤ると期待通りの結果が得られません。間違ったとしても、迅速に軌道修正できるフットワークの軽さが重要です。ポジショニングやセグメンテーション、ターゲティング、そしてプロモーションの4つの要素が一致しているか確認することが不可欠です。 業務委託におけるビジョン形成 現在、社内でさまざまな部署の業務を委託する業務を行っていますが、その中で「ニーズ」や「誰に売るか」が明確でないまま進行してしまうことがあります。現時点で大きな業務委託はありませんが、将来的にはそのビジョンも考えています。今回学んだ内容を活かし、社内業務の整理・分析・設計を行い、ビジョンにつなげたいと考えています。 実践に向けたフレームワークの活用法 「ポジショニング」「セグメンテーション」「ターゲティング」に関するフレームワークは、即実践的に使えるものです。今後の業務提案、業務設計、そして既存業務の見直しに活用していきたいと考えています。また、期末に向けてプレゼン資料を作成する際にも、これらの学びを活かそうと思っています。

データ・アナリティクス入門

原因探索で拓く学びの未来

なぜプロセスを分解する? WEEK05「原因を探索する」では、まず一連のプロセスを分解して、各段階の転換(例:表示からクリック、クリックから体験レッスンへの導線)について整理する手法が紹介されていました。次に、問題の原因を探るために、企業戦略だけでなくそれ以外の要因も視野に入れる「対概念」の考え方が示され、幅広い視点での分析が求められていることが分かりました。 どうして要因に注目する? また、原因探索の際には、コストやスピード、意思疎通といった項目を重要度に基づいて重み付けし、最もインパクトのある要因に注力することが提案されています。さらに、少ない工数でかつリスクを抑えて改善を実施できるA/Bテストによるランダム化比較実験の実施方法も取り上げられ、実践的なアプローチとして評価されていました。加えて、ファネル分析により、ユーザーの行動プロセスを段階ごとに可視化し、どこでユーザーが離脱しているのかを実数と比率の両面から明らかにする手法も理解できました。 この事例はどう見る? 一方で、筆者自身が携わる自動車部品メーカーの事例では、採用ファネル管理表の作成が依頼されながらも、実際の元データが分散・乱雑な状態にある現状が語られていました。採用プロセスの各段階(応募者数、書類選考、面接、内定)の実数と割合を把握し、Excelやグラフ化ツールを使って直感的に状況を捉え、進捗管理やボトルネックの特定、採用プロセス全体の効率化と品質向上を目指すという目的が明確にされています。 なぜデータ整備が必要? そのため、まずは不要なデータの削除、重複データの統合、欠損データの処理、書式や値の統一など、元データの整備に着手する必要があります。加えて、着手前には「なぜ採用ファネル管理表が必要か」を改めて検討し、採用業務全体に問題がないか、他の角度から問題が発生していないかを確認する重要性が強調されていました。 分析の重要性は何? 今回の学びを通して、分析の基本プロセスである「what, where, why, how」を行き来しながら、各ステップにしっかり向き合うことの重要性を改めて認識することができました。

クリティカルシンキング入門

問いを立てる力で見抜く本質

クリティカルシンキングの核心とは? クリティカルシンキングで最も重要なのは「問い」に関する部分です。まず、目の前の出来事が「問い」なのかに気づくこと、認識することを大切にしたいです。 正しいイシューの特定方法 起こった事象に対して「問い」を立てるのか、それとも事象が起こる前の部分に「問い」を向けるのかによって、アウトプットは大きく変わります。これまで学んできた「考えること」「分解すること」が重要で、本質を見抜くことが求められます。 基本戦略やセオリー、本来正しいはずの理論や手法も、特定した「イシュー」が間違っていれば、悪手になることがあります。「イシュー」は常に変化するため、定点観測や分析を通じて追い続けることが必要です。局面ごとに最適な「イシュー」を導き出すことが求められます。 問いの共有が鍵となる 「イシュー」を特定するためには、「問い」から始め、問いを残し、問いを共有することが重要です。まず疑問文の形にすること、具体的に考え、過度に壮大にしないこと、一貫して「イシュー」を抑え続けることが求められます。 自身に対して「問い」を立てる際は、的外れな方向に進まないようにし、立ち止まることや「問いを残すこと」を意識したいです。 具体例を視覚化する効果とは? また、基本的な「き」に立ち返り、分解を行うことが大切です。具体例を視覚化したり、多角的に見るためには図などを用いることが有効です。 イシューを見極める場面とは? 「イシュー」を特定する場面としては、業務改善や組織・チームの改善、営業戦略の立案時、さらには自身のタイムマネジメント不足に対処する際があります。目の前の課題に気づき、問いを起こすことができるかどうか、常に気付きのレベルを高く保つ必要があります。そのためには学習や自己啓発を続け、引き出しを増やし続けることが重要です。具体的な行動や取り組み姿勢として、自らをそうした環境に置き続けることが必要です。 最後に、「イシュー」を特定する際に「問い」を持ち続けるために、自分にとって視覚化が重要だと感じました。ソフトウェアの活用などを通じてこれを実践していきたいと思います。
AIコーチング導線バナー

「分析 × 業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right