データ・アナリティクス入門

4視点で読み解く問題解決のコツ

情報収集の課題は? 収集したデータは、そのままでは問題解決に活かすことが難しいと感じました。なぜなら、目の前にある情報に左右されやすく、都合の良い情報だけを集めて判断が偏ってしまうリスクがあるからです。 問題整理の手法は? また、【What】【Where】【Why】【How】というステップで問題解決を整理する考え方は、非常に効果的だと実感しました。これはデータ分析に限らず、さまざまな事象を体系的に整理する上で役立つ手法です。たとえば、製品企画や業務提案に取り組む際、どの切り口からアプローチするかの起点となるため、有用だと感じました。 提案の差はどう? 最近の新しい業務提案にあたっても、同様に【What】【Where】【Why】【How】で整理する必要があります。ただし、提案内容が【How】だけに偏ってしまう傾向があるため、MECEを意識して全体をバランスよく整理することが重要です。さらに、金額(HowMuch)や期間(HowLong)といった具体的な要素も含めて考えることで、より実践的な問題解決が可能になると感じました。

データ・アナリティクス入門

WHYを追う!仮説×データの挑戦

仮説検証で何が分かる? ライブ授業では、WHAT⇒WHERE⇒WHERE⇒HOWの順番に沿って、適切な仮説を基にデータ検証を行う重要性を再認識しました。以前学んだクリティカルシンキングにおける問題解決のステップと共通点が多く、両者の関係性がよく理解できました。仮説検証のプロセスにデータ分析を組み合わせることで、より良い課題解決や提案が可能になると感じています。 内部監査にどう活かす? この考え方を、私自身の内部監査業務にも取り入れ、問題の核心に迫る質の高い改善提案を実現したいと思います。特に、これまであまり重視してこなかったWHYの分析については、今後、的確に問題の真因を把握するために、重点的に実施していく予定です。 MECEで本質をつかむ? また、課題に対して決めつけず、全体をMECEの視点で捉えながら不要な部分と深堀が必要な部分を明確に区別したいと考えています。深堀が必要な箇所については、改めてWHAT⇒WHERE⇒WHERE⇒HOWのステップを踏み、考えを可視化して説明できるよう努めることが大事だと実感しました。

データ・アナリティクス入門

数字に秘めた学びの軌跡

データの真意は何? 実際のデータをただ眺めるだけでは、その背後にある示唆を十分に引き出すことは難しいです。データの意味を正しく理解するためには、適切な分析手法を用いる必要があります。 率の活用でどう変化? 単純な数字の比較だけでは良し悪しが明確にならない場合もあるため、「率」という指標を活用することで、より深い理解が得られることがあります。 体系的整理は有効? 問題の原因を探る際には、直感だけで原因を挙げるのではなく、体系的なフレームワークを使って整理することが効果的です。この方法により、抜け漏れなく各要素を洗い出し、論理的な仮説を立てやすくなります。 最適案の選び方は? また、複数の選択肢から最適な案を選ぶためには、コストや効果、運用負荷といった各比較軸に重みをつけ、数値化する手法が重要です。これにより、客観的な評価が可能になり、意思決定の質が向上します。 業務判断はどうなる? 日常業務においても、フレームワークや評価軸を意識して活用することで、論理的かつ効率的な判断を行うことができるようになります。

クリティカルシンキング入門

データ分析で見える!戦略立案の新視点

データ分解の重要性とは? データを分解することで、事象の原因について仮説を立てやすくなると理解しました。ただし、分解方法を誤ると要因が見えにくくなる場合があるため、複数のパターンで試行して最適な方法を見つける必要があります。また、分解には漏れなく重複なく全体を分解していくことが重要です。さらに、異なる切り口で分解することで、要因を特定しやすくなることも判明しました。 顧客分析で見つかるボトルネック 新規顧客と既存顧客に分けて、受注に至るまでの各プロセスにどのようなボトルネックがあるのか分析したいと考えています。同様に、業種や規模、地域といった異なる視点からも分析を行い、どこにアプローチをすれば最大の効果が得られるか仮説を立て、実践してみたいです。 効果的な営業戦略を立案するには? 営業戦略を立案する際には、まず業務プロセスを見直し、データを取得できるようにする必要があります。アプローチの回数や提案の回数、対面かWebかといった各種データを分析可能にするため、業務プロセスの改善から着手する必要があることが分かりました。

アカウンティング入門

数字の意味を解き明かす財務分析の旅

財務諸表の理解をどう深める? 財務諸表を完全に理解しなければならないと考えていましたが、各数字の意味を理解し、そこから経営状況を読み取ることが重要であると認識しました。難しく考えずに、会社の成績表を理解するというイメージを持ちながら、学習を進めていくつもりです。 経営企画部で成果を出すためには? 私は経営企画部を担当しているので、毎月の経営数字から会社の経営状況を把握できるようにしたいと思っています。そして、そこから経営課題を抽出し、早期に課題解決に向けた動きを起こせるように努めたいです。さらに、競合他社についても公表されている数字から経営状況を読み取り、将来の動向を想定できるようにしたいと考えています。 効率的に学びを定着させる方法は? 学んだことをしっかりと自分のものにするために、毎日の復習を欠かさず行いたいです。また、教えていただいた参考文献などを読むことで、財務諸表への理解を深めていくつもりです。そして、実際の業務を通じて自社や他社の財務諸表を見ながら、自分なりの考えをまとめていきたいと考えています。

クリティカルシンキング入門

反復学習で見える新たな自分

学習の反復は必要? 反復して学習しなければ、知識が十分に定着しないということを改めて実感しました。常に客観的な視点で物事を捉え、さまざまな角度から問い直すことで、抜け漏れのない理解に努める大切さを学びました。 伝え方の工夫は? また、情報を相手に伝える際には、分かりやすいメッセージを心がけ、グラフなどの視覚資料を活用して資料を作成しています。この手法は、問題や課題発生時の対応、社内ルールの作成と周知、プレゼンテーション資料の作成、部下への指導、不審者訪問時の対策、業務効率向上のアイデア出しなど、さまざまな業務に応用できると感じています。 多角的な検討はどう? さらに、常に客観的な視点で偏らないよう配慮し、イシューの分析においては多角的な視点から検討しています。メンバーの意見を積極的に取り入れることで、より実効性のある判断が可能となり、資料作成においても相手に伝わりやすい工夫を凝らしています。 振り返りの効果は? 学んだことは、必ず振り返りや反復を実践して、自身のスキルとして確実に身に着けるよう努めています。

データ・アナリティクス入門

実務で使える統計の知恵

代表値をどう捉える? 代表値として頭に浮かんだのは平均値と中央値でしたが、実社会では加重平均などさまざまな平均値が活用されている点にあらためて気づき、体系的に学ぶ重要性を感じました。また、標準偏差がばらつきを示すという理解はあったものの、計算方法や2SDルールについては改めて理解を深めることができました。 要因分析をどう活かす? 障害分析の要因分析においては、単に平均値だけを利用するのではなく、取得できる数値情報それぞれの意味を理解した上で、加重平均や幾何平均など適切な手法を用いる必要があると感じました。一方で、分散については現在の業務で具体的にどの局面で利用できるかはまだ明確ではありませんが、基本的な考え方として頭の片隅に置いておくべきだと感じました。 今数値はどう使う? まずは、現在扱っているさまざまな数値を見直し、現状の利用方法が適切かどうかを確認する必要があると考えました。また、まだ導入できていない分散についても、新たに算出することで別の視点が得られる可能性があるため、再度検証する必要があると感じています。

データ・アナリティクス入門

データ分析で見つけたWEB改善の秘密

WEBマーケで目指す成果とは? 私の業務はメーカーのWEBマーケティングに関するものであり、そのミッションは新規ユーザーをWEBページに集め、営業に引き渡すことで売上に貢献することです。具体的には、WEBページの閲覧状況を分析し、サイトの改善に役立てています。分析するデータには閲覧URL、流入キーワード、お問い合わせフォーム遷移率、その後の商談化率、売上金額などがあります。 分析の目的設定の重要性 分析においては、まず目的を明確にし、その目的を達成するために必要なデータの選定とどのように加工・分析するかを検討します。やみくもにデータを分析しても意味がないため、仮説を立てた上で分析を行うことが重要です。 業務スキルをどう活かす? 学んだことを業務に活かすために、まずは分析のフレームワークを学び、それを活用できるスキルを身につけました。グループワークを通じて、わかりやすく伝えるスキルも向上させ、学習を業務に積極的にアウトプットしています。これらのスキルと知識を活用して、より良いWEBサイトの作成と改善を目指しています。

クリティカルシンキング入門

データ分析の深さに触れる喜び

データ分析の楽しさとは? データの分析や加工を実際に自分で行えたことが非常に楽しかったです。Excelを使って学び直す経験も新鮮でした。データを複数の側面から切り分けることは久しぶりの学びでもありましたが、時間が限られているときにそれを実践するのは少し難しいと感じました。 数値を分解する面白さとは? 数値を扱う重要性や面白さを日常業務で感じることは年に数回ありますが、数値を分解していくと、表面では見えてこなかった関連性や有意差が明らかになるため、とても興味深いです。さまざまな切り口で分析することもありますが、アイデアが浮かぶときと浮かばないときがあるように感じます。 グラフ活用の重要性は? さらに、統計解析ソフトなどを利用すると、より面白い分析ができると思います。また、多様なグラフを作成することで、説得力のある説明が可能となると感じます。わかりやすく説明するためには、表よりもグラフの活用が重要だと思います。このような多様なグラフや可視化に関する技術も、データ分析とはまた異なる視点で学んでいくべきことだと思います。

データ・アナリティクス入門

仮説で切り拓く成長の道しるべ

ゴール設定はどう? 分析のゴール設定を常に意識し、単にデータ分析が目的化しないように気をつけます。仮説を立て、比較を通じてゴールにたどり着くプロセスを重視し、適切なデータの平均などの指標を選んでいく必要性を感じています。また、比較箇所以外の条件を統一しながら原因箇所を明確に捉えることも大切だと考えています。 複雑データはどう扱う? 人事業務では、多様な角度からのデータが関わるため、分析が目的となって袋小路に入ることが多かったと振り返ります。さまざまな要素が複雑に絡み合って事象が発生している点を念頭に置きつつ、常に分析のゴールを設定しそのゴールに向かって捉え続けること、そして仮説を立てる力を養うことを今後の課題にしたいと思います。 低評価の理由は? まずはエンゲージメント向上を目的とした取り組みから始め、低い評価要素の抽出や、それぞれの項目に対して低評価の理由について仮説を立てながら分析を進めていきたいと考えています。さらに、数値の高い部署と低い部署を比較することで、より具体的かつ実践的な分析を行う方針です。

クリティカルシンキング入門

問いから始まる勝利のレシピ

問いの大切さは? 問いを出すこと、問いを残すこと、そして問いを共有することの重要性を再確認しました。特に、問いを残すことの重要性については、講義やグループワークを通じて気づくことができました。また、日常的に自分の考えや発言が最初の問いからずれがちであることを改めて意識するようになりました。 業務の課題は何? 私の業務では、クライアントが抱える課題を明確にし、改善事項や改善施策を分析・立案し、実行を支援することが求められます。そのために重要なのは、何を問い(イシュー)とするかということです。そして、問いが明確になったら、その問いから外れないように意識して進めていくことが必要です。 実行手順は正しい? そこで、以下の手順を意識して進めることが重要だと考えています。まず、考え始める前に問いを整理し明確にします。この段階を省略すると、何を考えるべきか迷子になりがちです。次に、問いを残すことを意識しながら進め、答えを出したときにはその答えが問いに沿っているか確認します。そして、理論的に話すことを常に意識することが肝心です。

クリティカルシンキング入門

データ分析で実感した新たな視点の必要性

刻み幅の切り方はどう? データの傾向を把握するためには、「刻み幅の調整」が重要です。刻み幅によって、データの分布がどのように見えるかが変わるため、機械的な方法ではなく、どのように切ることで特徴が見えやすくなるかを仮説を立てて試みることが大切です。また、手元にある情報だけで判断すると視点が偏りがちなので、目的意識を持つデータ取得も必要です。 アンケート設計はどう進める? 今後、アンケート調査などを設計する際には、データの切り分け方を検討する際に役立てたいと思います。課題や事象の分析では、解釈の羅列ではなく、観点となる切り口を意識して情報を分解し構造化することが有効です。A for not Aの発想も活用できます。 定性情報はどう扱う? 業務においては、定性情報の示唆を分析する局面が多くあります。具体的には、プロジェクトのボトルネックの特定や、意思決定に影響を及ぼす要素の分析において役立てたいと考えています。ただし、定性情報を分解する際には、MECE的発想が必要かどうかを見極めたうえで活用することが重要となります。

「分析 × 業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right