データ・アナリティクス入門

問題解決スキルでデジタル広告を最適化

原因分析の重要性を知る 問題解決ステップにおける原因分析(Why)、Howの立て方について学びました。 原因を探るためのポイントは次の二つです。一つ目は、結果にいたるまでのプロセスを分解し、どのプロセスに問題があるか特定すること。二つ目は、解決策を決め打ちにせず、複数の選択肢を洗い出し、それを重みづけして評価・選択することです。 総合演習で何を学ぶ? 総合演習では、問題解決プロセス全体を経験しました。この過程を通じて、「問題が発生すると、解決策から考えてしまう」「仮説めいた持論を展開する」「それらしいデータに飛びつく」という思考のクセを極力排除し、問題解決ステップに沿って検討を進める方法を学びました。 実務での学びの応用は? 出版デジタルメディアにおけるタイアップ広告販売の仕事においても、この学びを活かせる場面がいくつかあります。 まず、タイアップ広告の進行中の検証や効果測定です。例えば、PVや再生数などの指標が当初の予測よりも悪い場合、従来はコンテンツの内容にのみ着目していましたが、今後はプロセスに分解することで、原因箇所を判断できるようになります。 次に、ABテストです。記事コンテンツは校了後に修正しないのが基本ですが、タイトルやサムネイル画像などの要素はテスト形式にすることができるかもしれません。また、SNSでUPするコンテンツでもテストが可能かもしれないと感じました。 成長戦略における問題解決 また、自社メディアの成長戦略策定においても、他部署と来期の戦略を立てている最中で、問題解決ステップを基にした議論がなく、Howばかりで決め打ちの議論になりがちです。そのため、効果検証がしづらい状況でした。そこで、自分が問題解決ステップのWhat、Where、Whyを整理し、メンバーに提案してみようと思います。納得してもらえるかはわかりませんが、WhyからHowの複数の選択肢を全員で洗い出してみたいです。 次に取るべき具体的アクションは? 具体的なアクションとしては、以下の内容を計画しています。 まず、途中検証がすぐにできるよう、プロセス分解を先に作成します。また、外部サポート企業にプロセス分解を依頼する予定です。 次に、サイトとSNSでABテストにかけると効果的な項目を洗い出し、社内に提案します。これについても、どの項目を抑えるとサイト成長の観点で効果的か外部サポート企業に確認します。 最後に、自社メディアの成長戦略策定に向けて、問題解決ステップに沿って自社サイトを分析しておくことです。これには、今週予定されているミーティングに向けてGA4を可能な限り分析することも含まれます。

デザイン思考入門

会話から覗く隠れた顧客ニーズ

会話分析で隠れたニーズは? 定性分析について学んだ中で、CRMの管理者として、営業担当が顧客との面談で交わした会話内容をテキスト分析することで、隠れたニーズを発掘できるのではないかと考えました。一人ひとりの顧客に対し、営業担当自身がそのニーズに気づけるCRMシステムが理想です。しかし、そのシステムが効果を発揮するためには、まず営業担当のインタビュー能力を高め、会話内容を漏れなくテキストとして記録する仕組みが必要だと感じました。 研修でどう均てんする? インタビュー能力の均てん化は研修を通じて改善できると考え、記録については音声入力などのテクノロジーが一定の解決策を提供してくれるのではないかと思います。 セグメントの切り口は何? また、顧客のセグメンテーションは売上などの定量的な視点からだけでなく、定性分析を通じてこれまでとは異なる切り口で行える可能性があり、その各セグメントに対する最適な解決策を考えることができると感じました。このため、膨大なテキストデータのコーディング作業が非常に重要だと考え、AIの活用により効率的に対応できるのではないかと期待しています。 システム改善をどう確認する? システム導入については、すぐに実施するのは難しい状況ですが、リニューアルされた別のシステムが以前より使いやすくなったかどうかをチャットベースでのインタビューを通して確認する取り組みも行っています。ただし、単に「使いやすくなった」といった安易な回答に終始せず、具体的にどの点が改善され、どこに課題があるのかを掘り下げる質問をしていくことが重要だと考えています。たとえば、普段どのページにアクセスしているのか、そのページやデータへのアクセスが容易になったかを確認するなど、具体的な視点から質問を設定しています。 利用意義をどう問う? また、システム利用によって本来的に実現したいことに焦点を当てる必要性も感じました。問題点を問うのではなく、見たいデータへのアクセス手順が改善されたか、データがインサイトを得られるように可視化されているか、といった具体的な問いを設定するべきです。ざっくばらんに意見を募ると、後々コーディングして集約する際に混乱が生じる恐れがあります。 仮説構築の秘訣は何? 定量分析が仮説の検証を目的とするのに対し、定性分析は新たな仮説構築を目的とします。コーディングを通じてプロセスやフレームワークを構築することで、これまで想定しなかった要素も明らかになるでしょう。デザイン思考においては、仮説が広範囲になりすぎず、解決策ありきの課題設定を避けることが肝要だと感じました。

クリティカルシンキング入門

データ分析で知る深掘りの楽しさ

何を学んだ? 今回特に学んだことは以下の3点です。 全体定義はなぜ? まず、問題に取り掛かる際は全体を定義することが重要です。いきなり分解や分析に入るのではなく、どのような回答となりそうかを想像し、仮説を立てることから始めます。その後、その仮説を検証するための分析方法を実施します。 MECEって何? 次に、MECE(Mutually Exclusive, Collectively Exhaustive)を意識することです。データを分析する際、漏れなくダブりがないかをチェックします。MECEが守られていない場合、分析結果が正しく事象を表していないことになり、本質を理解するためにこの考え方は重要です。 疑問で深掘りする? 最後に、結果が出ても「なぜ?本当に?」と繰り返すことです。分析結果が出た際に、それが正しく事象を表せているのか、なぜそのような結果になるのかを2~3回と深掘りして追求します。この過程で、異なる切り口での分析や、データ自体の見直しを行うことで、深い理解につながり、正しい答えにたどり着けるものと考えます。 現場で生かせる? 私は他部署で発生した事象について報告する業務が多いため、そこで学びを活用したいと思っています。たとえば、事業会社の売上実績を自部署内の会議で報告する際や、サプライチェーンの原材料調達コストの分析、新規プロジェクト立ち上げ時の計画立案などです。それぞれの場面で、様々な切り口で考え、MECEに基づいた分析を行い、結果を深掘るといったサイクルが非常に有効であると考えています。 データ報告の秘訣? 具体的な業務の中で、事業会社の毎月の売上実績を自部署内で共有する場面があります。ここでは、以下のように進めています: 定義の要点は? まず全体を定義します。事業会社から提供されるデータをもとに、いきなり売上や利益、単価の推移などを見るのではなく、何を部署内で共有するべきか、ポイントは何かを意識して仮説を立ててから分析に入ります。 分析は整ってる? 次に、MECEを意識します。その月の重点事項を決めたら、売上や利益、エリアや商品といった切り口で漏れなくダブりのない分析を進め、重点事項が正しいかどうか検証します。 結果の真意は? 最後に、結果が出ても「なぜ?本当に?」と繰り返します。もし仮説通りの検証結果が得られた場合でも、それが本当か確認します。異なる切り口からの確認も行い、事業会社から提供されたデータの数値を元に読み解くことを続けていきます。

データ・アナリティクス入門

データ分析が変えるビジネスの未来

分析を成功させるためには? ライブ授業を通して、次の3点を改めて整理できました。 まず、分析は比較によって成り立つということです。目的とアウトプットを明確にしてから分析に取り組むことで、闇雲な作業を避けることができます。 問題解決のステップをどう活用する? 次に、問題解決のステップ(What-Where-Why-How)の重要性についてです。当日の演習を通じて、これを実際に活用するイメージがつかめました。各ステップでは、目的を明確にし、ロジックツリーの活用や仮説設定、データ収集方法、データの見せ方などのポイントを整理しました。 データ分析から得た新たな発見とは? 最後に、分析のステップとして、検証したいことを具体的にし、仮説を立て、何と比較するかを意識しながらデータを集め、加工してビジュアル化することで、新たな発見が得られることを再確認しました。 また、データ分析の活用については以下の3点が挙げられます。 1. 企画立案時のマーケティングプロセスにおけるデータ活用 現状では、企画立案が現場の勘や経験に偏りがちですが、データを用いることで、より良い意思決定や施策運営につなげたいと考えています。さらに、他の施策との比較や過去のデータ分析を通じて課題点を洗い出し、マーケティングプロセスを改善していきます。 2. 施策振り返り時の検証 施策を振り返る際には、実績に対する問題や課題を明確にし、次の意思決定のために仮説を立てて検証することが重要です。 3. 課題解決に向けた活用 具体的な課題が提示されたときは、問題解決のステップと仮説検証の考え方を用いて取り組んでいきます。 学習方法の見直しがもたらした効果 これらの活用方法を通じて、アウトプットを進めていきたいと考えています。 さらに、本講座の復習をしっかり行い、学んだことを言語化しアウトプットできるようにし、問題解決ステップや仮説思考、フレームワークを実務に取り入れて練習します。自然に使いこなせるようになることを目指します。また、周辺知識の学習も継続的に進めていきます。データ活用にはクリティカルシンキングや伝える力、マーケティングに関する知識が必要で、今回自分に合った学習方法が見えたのも大きな収穫です。 今年度の目標達成に向けた取り組み 今年度は、施策の乱立を防ぎ、効率的な施策運営のために可視化データを作成し、リソースを他の業務に割けるようにしていきたいと思います。そして、掲げた目標に向けて努力を続けます。

データ・アナリティクス入門

ビジネス分析で得た新たな気づきと学び

分析はどう進める? 演習を通じて、実際のビジネスにおける分析思考を実践することができました。目的を明確にした分析や比較対象の明示、仮説を網羅的に洗い出し、可能性の高いものを検証していくプロセスを学びました。また、数値のばらつきを意識し、代表値に惑わされず、データの適切な見せ方についても考えることができました。 割合の見方は? 実数と割合の両方を把握することの重要性を理解しました。変化が現れる割合の内訳や、それが分析に値するかどうかを見極めることが求められますが、そこに対応が不十分な点に気付きました。無視してもよい場合は早めに切り捨てることで、分析の効率化につながることを学びました。 実績はどう比べる? 実績を比較する際には、既存データの見え方に惑わされないようにし、元データをしっかり把握することが重要です。逆に社内での説明時には、平均や代表値を用いつつ、その根拠となるデータもグラフで示し、データの精度を納得させるように努めたいと思います。平均、中央値、最頻値のどれを用いるか、慎重に考える必要があります。 不要データは除く? 効率化のために、不要な情報を最初に除外する判断が求められます。データの予測精度を上げるために複数の方法を試し、正確性に欠けるものを排除することが必要です。具体的には、当年実績予測を立てる際に、どの予測方法を採用するかを検討します。いくつかの手法を出し、例年の傾向を踏まえて選ぶといった作業が重要です。 課題は何でしょう? 分析における「比較」「目的」「課題」を明確にし続けることが重要であり、学びやインプットの時間を意識的に捻出することを続けたいと思います。特にExcelの実践スキルを高めることが課題であり、データ分析の本質や考え方についての理解を深めることができましたが、実践がまだ不足しています。業務の中でも学びの時間を作り、スキルを磨いていかなければなりません。 効率はどう上げる? データ分析を行う中で、「もっと効率的に行う方法や関数があるだろう」と感じながらも、業務の中では時間がとれないことがあります。学びの時間を構築し、最初は大変でも一度挑戦することが重要です。それを繰り返すことで、最終的な作業の効率化や精度の向上につながります。 多角的視点は? 最後のライブ講義で提示されたクリティカルシンキングのポイントを忘れずに意識しておきたいと思います。多面的に考えることを意識し、様々な人と話し、インプットを続けることが大切です。

データ・アナリティクス入門

仮説で拓く学びの道

分析の基本は何? 本資料は、分析を比較の視点から行い、仮説思考を持って問題に取り組むための考え方と手法を示しています。分析の要点として、プロセス、視点、アプローチの三つの軸が必要とされ、各軸が互いに補完しながら、より深い理解を促すことを意図しています。 プロセスをどう考える? プロセスでは、まず目的や問いを明確にし、その問いに対する仮説を立てます。次いで、データを収集し、分析によって仮説を検証するという流れが求められます。 視点と工夫は? 視点については、インパクト、ギャップ、トレンド、ばらつき、パターンといった観点からデータを捉え、それぞれの側面から情報を整理していきます。一方、アプローチでは、グラフ、数字、数式などを用いて、情報を視覚的かつ計量的に表現することで、理解しやすくする工夫が大切です。 可視化はどう? 比較のための可視化手法としては、データの特徴を一つの数字に集約する方法、グラフ化して目で捉える方法、そして数式に集約するアプローチがあります。これにより、データの持つ意味がより明確になります。 代表値は何? また、データを見やすくするためには、代表値と分布の確認が有効とされています。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、一方、ばらつきを見るためには標準偏差が活用されます。特に、95%のデータが含まれるという2SDルールは、分布の確認において重要な指標となります。 契約単価の意味は? 具体例として、【1】の契約単価の場面では、相加平均を用いた結果、受注率などの違いが十分に反映されず、平均値が大きく見えてしまうという事実が挙げられます。そのため、加重平均を用いることで、感覚に近い平均単価が算出できる可能性が示唆されます。 成長率はどう考える? また、【2】の成長率の場面では、合計の成長率を足して年数で割る方法が用いられていましたが、こちらは幾何平均を利用するアプローチが適切です。具体的には、(1+x)^2=◯年後の売上/スタート年の売上という考え方に基づく計算が求められます。 計算見直しは? これらの考え方を踏まえ、Q2では【1】と【2】の実際の計算を見直し、過去に作成したデータを再評価する行動を取る必要があります。また、平均値の計算方法一覧を見える場所に保存し、必要な際にすぐに確認できるようにすることで、定着した学習行動が実現されることが期待されます。

データ・アナリティクス入門

比較で見える、成長の瞬間

分析の基本は? 分析の本質は「比較」にあります。まず、分析は①プロセス、②視点、③アプローチの3つの軸で進めることが基本です。プロセスは大きく4つのSTEPに分かれます。まず目的や問いを明確にし、その問いに対する仮説を立てます。次に、既にあるデータや新たに収集する情報(見る、聞く、行う)を活用してデータを集め、最後に分析によって仮説やストーリーを検証していきます。データ収集時は、サンプリングバイアスや設問設計の影響に注意し、適切なA/Bテストの実施も視野に入れます。 重要視点は何? 次に、分析を行う際に重要な視点は5点あります。まず、インパクト:どの程度の影響があるかを把握し、優先順位をつけること。次に、ギャップ:比較対象や軸を明確にし、どの部分が異なるのかを確認すること。さらに、トレンド:時間の経過による変化の傾向を把握し、異常な部分を見つけること。加えて、ばらつき:全体の分布がどれだけ偏っているかを平均値や中央値などで見ること。そしてパターン:全体や変曲点から法則性を読み取ることが大切です。 グラフの工夫は? また、アプローチとしては、グラフや数字、数式を用いてデータを視覚化する手順があります。まず仮説と伝えたいメッセージ、次に比較対象を明確にし、どのグラフを使用するかを検討します。一般的な項目の比較では横棒グラフやウォーターフォールチャート、時系列の変化を示す場合は折れ線グラフや縦棒グラフ、構成や分布を表すにはヒストグラムや円グラフ、相関関係を示すには散布図が有効です。横棒グラフは特に多用されますが、加工に手間をかけることでより分かりやすくなります。 日常の見直しは? また、日常の業務や振り返り、目標設定・計画立案において、MECEや層別分解といった手法を使いながら、固定観念や偏った思考を見直し、仮説思考を鍛えることも重視しています。社内では、数字や思い付きだけで次を考えるのではなく、定量・定性データ分析の手法を共有し、分析は「比較」に基づくという前提と、意思決定を目的とするという考えを全員で理解しています。この目線合わせのもと、各種フレームワーク(たとえば3C、クロスSWOT、セグメンテーション/ターゲティング/ポジショニング、4Pなど)を取り入れながら、What/Where/Why/Howのステップを踏んで分かりやすいビジュアル資料を作成し、あるべき姿を説得力ある形で提案できるよう学び続けています。

データ・アナリティクス入門

思考のクセを正し、問題解決力を高める方法

問題解決のステップをどう活用する? 問題解決の4つのステップ、すなわちWhat(問題の明確化)、Where(問題箇所の特定)、Why(原因の分析)、How(解決策の立案)を学びました。私の思考のクセとして、Whatを決め打ちしてしまうことや、Howの展開に意識が向きすぎることがあります。そのため、Whatに関しては目の前の課題が全体構造のどこに位置づけられているのかを確認するよう意識しています。Howについては、Whatの構造を理解し、Where→Whyを経てしっかりと導き出すことで、数ではなく説得性と精度を高めていきたいと考えています。 A/Bテストを成功させるには? A/Bテストについては、比較検証を目的とするため、以下のポイントを理解しました。 - 複数の要素を同時に変えると検証が難しくなるため、このようなことは避ける。 - 同列で比較する必要があるため、期間・ターゲットなど条件をできるだけ揃える。 - 低コストで実施できるため、トライ&エラーを重ねて精度を上げていく。 購入者定着の課題をどう解決する? 「商品Aの購入者定着」という課題に対しては、一旦立ち止まって状況を整理しました。例えば、購入者定着を要素分解(要素集約)すると、上位階層に売上向上という課題があります。本質的な課題としては、「売上向上があり、分解すると新規と定着に分けられ、データで補足すると新規の向上が売上の変数として大きく影響する」という課題に変わる可能性があると捉え、4つのステップを視野を広げるためと、要素を絞り込んで確度を上げるために活用していきます。 広告効果の測定には何が必要? ABテストは広告の売上効果を測る際に用いたいと考えています。しかし、売上に関わる変数(広告外のプロモーションや価格など)が多いため、「広告だけの効果」を測るのが難しいです。この点についてアドバイスが欲しいです。 課題特定を円滑にするには? 現在取り組んでいる各部署の伴走案件において、上記の4ステップを課題特定に活用しています。会社上層部からの指示や慣習などから使用するデータや活用方針がある程度決まっているため、他の選択肢を持てない方もいます。そういった場合、一度立ち止まって課題の要素分解を行うよう促しています。月内に7つの案件があるため、事前に各部署の業務理解を深め、広い視野で課題を捉えることを意識して伴走します。

データ・アナリティクス入門

データ分析の成功術を学ぶ旅

目的はどう設定する? データ分析を効果的に行うためには、いくつかの重要なポイントを押さえる必要があります。まず、データ分析に取り掛かる前に、目的や仮説を具体的に設定しておくことが重要です。これにより、分析がスムーズに進むだけでなく、目標に対して効果的な手法を選ぶための指針となります。 切り口はどう選ぶ? 次に、分析のステップとして、問題解決のプロセスには「what, where, why, how」といった段階を経ることが挙げられます。特に、データをどの切り口で見るかを判断する際は、その切り口が解決に役立つかどうかや、データが入手可能かどうかを考慮しなければなりません。また、平均値を用いる際には、データのばらつきも確認することが不可欠です。代表値を選ぶ場合も、元データの傾向を理解しておくことが必要です。 数値の意味はどう見る? 実数と率を確認することも重要です。たとえ割合が大きく見えたとしても、実数が少なければ優先度は高くないかもしれません。分析はただ闇雲に行うのではなく、数字の根拠に基づいたストーリーを描くことが求められます。そのためには、データの傾向をつかみ、特に見るべきポイントを明確にする必要があります。データは伝えたいことが分かりやすい形に加工することが望ましいです。 解決策はどう選ぶ? 解決策を選定する際には、得た知見をもとに複数の選択肢を洗い出し、判断基準を持って選定することが求められます。例えば、販促施策の振り返りでは、単に目標に対する数値を比較するのではなく、何が成功したのか、どんな改善が必要か、そしてその理由を深掘りすることが重要です。 SNS戦略は見直す? さらに、自社のSNS運営方針の再検討においては、現状の方針が適切かを評価し、必要であれば異なる方向性を検討することも考慮すべきです。インプレッションやコンバージョン率などのデータを参考にすることで、同じ目標に対しても新しいアプローチを見つけることが可能です。 検証はどのように進む? 仮説を立てた後、その検証を進める際には、結論に飛びつかず、複数の視点から考慮することが重要です。これにより、示唆の幅を広げることができ、問題解決に向けたステップを適切に踏むことができます。分析を行う際に少しでも学んだことを次に活かし、適切な場面で適切な手法を用いることが、成功の鍵となります。

データ・アナリティクス入門

データ分析で成果を引き出す方法

CTRとCVRはどう分析? プロセスを段階的に考えることは、データ分析において非常に重要です。例えば、CTR(クリック率)やCVR(購入率)を比較することで、プロモーションの効果を測定します。この段階で、CTRが高い場合はターゲットユーザーに適した場所でプロモーションが行われているか、または掲載しているクリエイティブがユーザーに合致していることが考えられます。同様に、CVRが高い場合は購入を促すことができていたり、サイトのUI/UXが優れている、商品そのものが魅力的であるという理由が考えられます。これらの指標を基に課題を抽出し、改善策を講じることが必要です。 仮説はどう作る? 原因を仮説立てる際には、思考の範囲を広げることが求められます。具体的には、フレームワークを利用したり、反対概念を活用することが有効です。最適な解を見つけるためには、初めに適切な判断基準を考え、それに基づいて評価を進めます。判断基準に重要度の違いがある場合は、重み付けを行い、比較検討を通じて最適な解を選びます。 費用対効果はどう判断? プロモーションの費用配分を検討する際には、有料広告のCTRやCVR、各コストを再度検証し、費用対効果の観点から最終的には投資対効果への移行を考えます。また、メールマーケティングにおいては、ターゲットに適したバナーを見つけるために、ビジュアル、テキスト、クリエイティブの観点からABテストを実施します。 意思決定は合理的? 中長期的には、会社全体で「勘と経験に頼る意思決定」を「データ分析を用いた合理的な意思決定」へ移行することを目指します。このためには、誰でも気軽に分析ができる環境を整え、学びとモチベーションを高め、業務効率化により時間を確保することが重要です。 効果検証はどう実施? 投資対効果を考える上で、判断基準の検討、検証方法の確立、経営層への効果的なアプローチが求められます。メールマーケティングにおけるバナーのABテストの実施例として、秋の行楽シーズンを訴求する際に、ビジュアル面では人物の有無やテーマ、テキスト面では金額や特典、クリエイティブ面では静止画や動画を考慮に入れることが挙げられます。 人材育成はどう進む? また、データ分析における人材を育成するために、社内の教育プログラムを活用し、DX変革を推進するための環境作りも必要です。

クリティカルシンキング入門

目的を明確に!効率的な問題解決法とは?

学びを日常にどう活かす? これまで学んできた内容を全体的に復習しました。その中で、改めて「目的を明確にすること」と「問いを立てること」の重要性を再認識しました。人間の思考は主観に偏りがちで、そのために本質からそれた部分に焦点を当ててしまうことがあるという前提を持ちました。自分の思考が偏らないようにするためには、まず物事の全体像を把握し、イシュー(課題)を特定することが大切です。そのためには具体と抽象を繰り返し、様々な角度から物事を見る必要があります。この過程でイシューを特定し問題の本質を明確に捉えることが、効率的な情報処理に繋がると改めて感じました。 情報処理の効率化とは? この学びは日常の様々な場面で活用できると思います。たとえば、報告・連絡・相談(報連相)、プレゼンテーション、社内外の会議、問題定義や課題解決時などです。自分の主観で物事を進めていないか、イシューを特定できているかを常に確認していきたいと思います。また、人との業務上の会話の中でも相手がイシューを特定できていない場合に、自分からイシューを明確にすることで会話がスムーズに進むので、この点を意識していきたいです。 効果的な問題解決法は? 何事も着手する前に立ち止まり、「目的を明確にすること」「全体像を把握しイシューを特定すること」「伝える内容と目的を明確にすること」を実践していきます。具体的には次のような場面・行動を考えています。 1. **データ分析の際に仮説を立てる** - 行動: データを単純に見るのではなく、まず全体像を把握し、問いを立ててから分析を行います。問いに基づき、どのデータが重要かを判断し、結果を検証するプロセスを経て分析の精度を高めます。 - 理由: 問いを立て、分解し、結果を検証することで、より深い洞察を得ることができます。 2. **プロジェクトやタスクの問題解決における代替案の評価** - 行動: 問題が発生した際、単一の解決策に飛びつくのではなく、複数の代替案を出し、それぞれのメリットとデメリットを比較検討します。そして最も効果的な方法を選択します。 - 理由: クリティカルシンキングを活用することで、短期的な解決策ではなく、長期的に効果的な解決策を見つけることができます。 これらの行動を日常の仕事に取り入れることで、より効果的で効率的な業務遂行を目指していきます。

データ・アナリティクス入門

数字から見える問題の本質と解決策への道程

分析の本質とは何か? Week1のポイントを復習しました。分析の本質は比較であり、比較する際に注意すべき点は、比較対象を揃えることです。問題解決のプロセスには、What、Where、Why、Howの4つがあります。 問題解決の4ステップとは? まずWhatでは、何が問題なのかを定めます。次にWhereで、問題がどこにあるのかを特定し、あるべき姿と現状のギャップを数字を用いて比較します。この段階ではフレームワークが有効です。Whyでは、なぜ問題が発生しているのかを探ります。そしてHowでは、どのように対処するかを考えますが、すぐにHowに飛びつかないことが重要です。 データ分析の注意点は? さらに、単純な平均値に惑わされず、データのばらつきに留意することが必要です。代表値として平均値、中央値、最頻値をチェックし、ヒストグラムを用いてデータにばらつきがないかを確認します。 仮説の検証方法は? 仮説を立て、その仮説が成り立つかを検証するためにデータを集めます。問題の原因を明らかにするためには、プロセスに分解する方法が有効です。解決策を見つける際には、複数の選択肢を洗い出し、それぞれの根拠をもとに絞り込みます。 チームでのデータ分析をどう進める? こうした復習を行った上で、実践問題に取り組んだところ、数値を見ることや問題の箇所を特定することがかなりスムーズになったと感じました。しかし、複数の回答を絞り出そうとすると視野が狭くなることがありました。データ分析を行う上では、一人で考えるだけでなく、チームメンバーの多角的な視点が必要であると感じました。そのためには、チームメンバーにもデータ分析の考え方を共有し、共通のプロセスを踏むことが必要だと感じました。 お客さまアンケートの分析は? 現在、上半期の施策などの振り返りを行っています。その中で、お客さまアンケートの分析業務が現在のメインの仕事となっています。この分析を通じて、お客さまからの評価のボトルネックとなっている部分を発見し、対策を講じる必要があります。 問題発見と仮説の共有方法は? まずは、問題がどこにあるのかを明らかにするために、関連するデータをビジネスプロセスごとに並べてチーム全員で意見交換を行います。問題の所在が見えてきたら、その原因について仮説を立て、チームメンバーでその仮説を共通認識にします。

「データ × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right