アカウンティング入門

数字で探る未来経営のヒント

財務諸表で何が見える? 企業活動が定量化された財務諸表を活用することで、事業活動が順調に進んでいるか否かを把握することが可能となります。数字を使うことで説明がしやすくなる点も大きなメリットです。ただし、「読む」と「作る」を一緒に考えてはいけないという点も意識すべきです。なお、アカウントの語源は「説明する」にあるということですが、実際にはわかっているようでわかっていなかったと感じる部分もあります。 双方の財務、どう判断? 自社の財務状況を正しく理解し、業績が良いのか悪いのかを把握したいと考えています。また、得意先や仕入先といった他社の財務状況にも目を向け、財務数値を確認することで、取引先として適しているかどうかを判断できるようになりたいと思っています。 決算書はどう読む? 今後は、自社の決算書に目を通し、財務諸表の読み方や着眼点を学ぶとともに、他社の企業分析も確認する予定です。ビジネス雑誌などで掲載される企業分析にも触れる機会を増やし、考え方や見方を定着させるための訓練を積んでいきたいと考えています。

アカウンティング入門

P/LとB/Sで学ぶ実践的経営分析

比較モデルの新たな発見とは? 実在の企業をモデルにした比較は、これまでのカフェ比較に比べて非常にリアリティがあり、面白く取り組むことができました。ただ、P/L(損益計算書)とB/S(貸借対照表)を別々の企業で行うのではなく、同じ企業のP/LとB/Sを同時に見ることで何か傾向を学べれば、より良かったと思います。 P/L活用の具体的方法は? 直近では、自社全体での活用は大きすぎるため、まずは自部門のP/Lを閲覧する際に今回の学びを活かしていきたいです。自部門のP/Lは管理会計であり、財務会計ではないので、今回学習したP/Lと構造が異なります。そこで、一度学習したP/Lに合うように成型し、数字の管理に慣れていきたいと考えています。 数字管理の重要性とは? 現在、私はまだP/Lを直接管理したり、それを基に分析を行ったり、分析を立案する立場にはいませんが、いつでもその業務に携われるように数字の管理に慣れておくことが大切です。他部門と比較して何が違うのかを分析し、必要な改善箇所と具体的な対策を立案していきたいと思います。

データ・アナリティクス入門

データ分析でチーム力: 組織全体を強化する方法

仮説検証の重要性とは? 目的に基づいて仮説を立て、データを収集し、その仮説を検証するサイクル(プロセス)に視点とアプローチを加え、データを読み解くこと。その際、代表値を用いる場合、判断方法には多くの選択肢があり、散らばりも含め、目的やデータ自体に合わせて使い分けることが重要です。また、平均は外れ値に弱いことを忘れず、必要な対処を行うことが大切です。 成績把握のポイントは? 日次や月次ごとの担当者間の成績や能力を把握・分析する際には、課内メンバー間の横比較や個人の推移を確認します。その際、外れ値に注意しながら平均値を用いるのは有効です。これにより、適切な組織の人材配置や各担当者の対応許容量の検証・分析が可能となります。 組織全体の課題解決方法は? 担当者間の成績を日次や月次ごとに分析することで、横比較や個人の進捗を把握し、組織全体の課題解決の促進に向けて適切な手を打つタイミングや個人の対応許容量をデータで分析します。適切に個々の許容量を管理することで、弱点の強化策や適材適所の人材配置の判断材料として活用します。

アカウンティング入門

筋肉質な会社を作るための貸借対照表分析

貸借対照表の基本を理解しよう 貸借対照表で使用される用語とその意味を理解することができました。資産は会社の大きさを表し、純資産は骨格や筋肉に相当します。一方、負債は脂肪に例えられます。純資産の割合が高い会社は筋肉質な会社と言えます。また、貸借対照表はCTスキャンのように、会社の健康状態を表す指標です。事業の内容やコンセプトによって、貸借対照表の中身も変化します。 経営状況の分析方法とは? まず、自社の貸借対照表を確認し、その中身(項目)を基に自社の経営状況を分析します。次に、競合他社の貸借対照表を見て業界全体の状況や傾向を把握し、自社と比較します。これにより、自社の経営状況を相対的に分析することが可能になります。 効果的な予習・復習のポイント 講義の内容については、予習・復習の時間を30分以上設けます。また、アウトプットとして自社の貸借対照表を確認し、気づいた点や疑問点を書き出します。書き出した点については、自社内のアカウンティングに詳しい社員に聞き取り、アドバイスを求めることで自身の理解度を深めています。

アカウンティング入門

数字に迫る!企業評価の極意

財務三表の意味は? 業務で使用していた財務三表が、事業活動の全体像を把握し定量的に評価するためのツールであると再認識できたことは、有意義な学びでした。この経験を通して、企業評価の際にどこに着目すべきか、さらに深い理解が必要だと感じています。 管理や説明はどう? また、管理職として自社やチームの現状把握、さらには今後の方針検討に活かすことも目指しています。同時に、コンサルタントとしてクライアントに対し、定量的なデータだけでなく図表などの補助資料を活用し、より分かりやすく説明できるよう工夫することにも努めたいと考えています。具体的には、週次のレポートにおいてアカウンティング視点からの項目追加や精度向上を図るなど、数字の裏付けに基づいた分析を進めていく予定です。 分析をどう進める? 全体として、財務三表の再認識は、企業の強みや弱みを見極め、成長性や安定性を判断するための新たな視点を獲得する良い機会となりました。今後は、具体的なケースを通じて各財務表の評価ポイントを整理し、実践的な分析手法を身につけていきたいです。

データ・アナリティクス入門

データ分析で学び得た具体的な手法とは?

分析の心得から具体例へ これまでは主に分析の心得に関するマインドセットを学んできましたが、今週からは具体的な分析手法についての講義が始まりました。平均値が極端な数字(はずれ値)によって大きくぶれる可能性を知っていたものの、中央値を具体的に説明できる計算式が非常に参考になりました。 データビジュアライゼーションの活用法 現在、データビジュアライゼーションに取り組んでいるため、代表値と分布をうまく使って視覚的に「伝わる」図を作りたいと思っています。そのため、標準偏差と分布の使い分けも重要です。どの要素の数値を組み合わせるかという「切り口」が非常に重要だと感じています。 定性的と定量的の融合をどう図る? さらに、アウトプットの質と量が重要であるため、あらゆるデータに対して「分析できないか」という視点を常に意識しています。仕事上、定性的な感覚を重視していますが、そこにデータなどの定量的な裏付けを加えることが大切だと感じています。数値情報の取得が可能かどうかがネックになることが多いというのが、私の経験上の課題です。

クリティカルシンキング入門

多角的視点で魅せる学びストーリー

根本原因を捉えるには? 論点や課題、問題の根本を捉えるためには、多角的な切り口からの分析が必要です。グラフなどの視覚資料を工夫して用いることで、データが一目で理解できるように整理すると良いでしょう。分析結果をもとに、的を射た対策を慎重に検討する姿勢が求められます。 問い合わせは何故? たとえば、社内からの問い合わせが多く業務効率が低下している場合、その問い合わせ内容を詳細に分析し、そもそも情報の周知不足なのか、マニュアルが分かりにくいのかといった根本的な原因を明らかにする必要があります。 結果伝え方はどう? さらに、さまざまな視点から問題や課題を分析し、真の原因を把握することが大切です。そして、得られた分析結果を、相手に分かりやすく伝えるためにメッセージ文を十分に検討して作成することが効果的なコミュニケーションへとつながります。 グラフ作成の工夫は? また、グラフ作成にあたっては、結果が直感的に理解できるようにレイアウトやデザインを工夫し、見る人が情報をすぐに把握できる表現にすることが重要です。

クリティカルシンキング入門

振り返りから学ぶ分析力の磨き方

比率とロジックツリーの活用方法 ある事象の分析に際して、比率を用いて深く調査でき、その後、ロジックツリーを活用してさらに詳細に研究することができました。特に重要だと感じたのは、表を作成することで、多角的な視点から情報を確認できる点です。この学びを生かし、今後も正しい方向性を考え、さらなる学びを続けたいと思います。 相続関連業務の需要とは? 新たな業務提携企画にこの知見を活用していく予定です。相続関連業務、例えば相続対策や事業承継の分野では、外部環境の分析や需要の増加が求められるようになっています。また、遺言に対する顧客の抵抗も減少傾向にあります。ある程度のマニュアルを作成し、それを分かりやすくまとめることが目標です。 新業務企画の進捗はどこまで? 新業務企画の大枠を設定し、ロジックツリーを描きながら不足部分を補完する試行錯誤を繰り返しています。今週中に新しい業務企画の合意書を完成させたいと思います。また、複数の表を作成し分析を行い、MECE(もれなく、ダブりなく)の原則を心がけて日々取り組んでいきます。

データ・アナリティクス入門

見える数値が導く新たな発見

数値の見直しは? 昔から用いられている数字の指標は、単一の平均値で表現されることが多いため、別の数値の捉え方をすると、販売手法を変更した際に新たな発見や結論が導かれると感じました。 可視化の意義は? 最近はデータ量が増えたことで、可視化にあまり重点を置かなくなっていましたが、見えるものから得られる情報も、適宜プロセスに組み入れると有用だと思います。 評価視点を変える? 自分が現在行っているパフォーマンス指標についても、どの視点で実績を評価しているのかを意識し、他の数値の読み解き方が可能かどうか確認し、日々の業務に役立てたいと考えています。特に、これまで使用してこなかった幾何平均や中央値については、意識して活用するようにしたいです。 データ活用方法は? また、商品実績の追跡は頻繁に行っていますが、カスタマーデータの分析は十分ではなかったため、カスタマーデータを改めて商品実績の分析に生かすことで、より多くの情報が得られるのではないかと考え、本日学んだ内容を業務に活かしていく所存です。

データ・アナリティクス入門

比較の視点が開く学びの扉

データ比較の意味は? データ分析は本質的に比較であり、たとえばパソコン購入時に「購入目的」や「必要性」を問い直す姿勢には、根本から見直す意義を感じました。比較の材料が多岐にわたるため、広い視点で重要な要素を捉えることが、適切な比較―すなわち分析―につながると実感しています。 地域診断の見方は? また、今後「地域診断」を学生に教える際には、国、都道府県、市町村の各レベルでのデータ比較や近隣地域との比較が必要であることを強調したいと考えています。さらに、データの推移を見る際には、時代背景や社会情勢の変化、住民の価値観、教育水準、生活水準、文化、財政状況など多様な観点からの比較が不可欠です。 指導計画はどうなる? 来週から始まる学生の実習地での地域診断指導に向け、資料の見直し、指導スタッフとの方針の共有、記録用紙の修正を行う予定です。複数の実習施設に分かれて進められる実習では、各グループが進捗状況を発表することで、自分の実習地と他との比較が自然に行われ、異なる分析方法を学ぶ良い機会となると期待しています。

データ・アナリティクス入門

問いから始まるデータ探求

仮説はどう作成? データ分析において、まず仮説(問い)をどのように作成するかが重要であると再認識しました。解説で提示された「地元のネットワークを構築できなかったから」という視点は、私にとって新たな発見でした。また、仮説自体の数が少なかったことから、問いを思いつくためのトレーニングが必要だと感じました。 中央値の適用は? 代表値、特に中央値の用い方についても多くを学びました。アンケート分析などにおいて、平均値が低いという理由だけで意図的に中央値を用いるのは適切ではないという指摘は、慎重な判断が求められると実感させられました。 平均値は信用できる? 報道などで目にする数字の平均値だけに頼るのではなく、しっかりと問いを立て、調査することの大切さを改めて考えさせられました。 最適なグラフは? また、伝えたい内容や主張に合わせて最適なグラフを選定する方法を検討し、Excelなどで実際に作成してみることが有効だと感じました。問いを立て、その根拠となるデータを調べ考察する訓練の重要性も実感しました。

データ・アナリティクス入門

データ分析で役立つ具体的アプローチ

分析の流れをどう把握する? 分析とは、目的、仮説、問い、そしてデータ収集・加工を行うという流れをきちんと把握することが重要だと感じました。また、インパクト、ギャップ、トレンド、ばらつきなどの各因子を鑑みたうえで数値を見ていくことが必要であると理解しました。 代表値の注意点とは? 何かとすぐに飛びつきがちな代表値の中でも、特に単純平均値には注意が必要です。業務では、サイト流入数や売上など様々な数値を見る機会が多いため、一つの代表値だけでなく、多様な代表値を目的をもって算出したり、散らばりを意識した分析を行いたいと感じました。 データ収集のポイントは? 日次、週次、月次など期間を定めた上で、数値の意味を考えたデータ収集や分析を行うことが重要です。過去のデータを活用しながら自分なりの仮説を立て、今回学んだフロー(目的→仮説・問い→データ収集→検証)を実施していきたいです。また、インパクト(重み)、ギャップ(差異)、ばらつき(分布)といった視点を意識しながら、数値の意味を考えていきたいと思います。

「分析 × 表」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right