戦略思考入門

逆算で切り拓く自分だけの戦略

どうしてゴール設定大事? 戦略思考とは、まず適切なゴール(目的)を定め、そのゴールへ向かうための道筋を具体的に描き、最速かつ最短で到達するための計画を立てることを意味します。また、何をするべきか、何をしないべきかを明確にし、自分ならではの強み(コア・コンピタンス)を持つことが大切だと実感しました。 面談で何を明確に? 具体的に活用したい場面としては、人事関連の1on1面談において、まずゴールを明確に設定し、その達成に向けた戦略(スケジュールやリソース、具体的なアクション)を整理して、お互いに合意したいと考えています。特に、キャリア計画では目標設定が定性的になりやすいため、まず自分のビジョンを明確にし、そこから逆算する形でゴールを設定し、そのための戦略、特に「やらないこと」をも含めた計画を学びたいと思っています。現在はまだ具体的な行動計画には至っていませんが、今後の学びを通じて、より実践的な戦略を築いていきたいと考えています。

クリティカルシンキング入門

数字を超えた視点の冒険

数字の見方は本当か? 数字をただ見るのではなく、視覚化やグラフ化することで、より多角的な意味を見出すことができると実感しました。また、MECEの基本的な考え方についても理解が深まり、モレやダブりを意識することの重要性を学びました。「本当にそうか?」と問いかけるプロセスが、短絡的な結論を避ける上で大切だと考えます。 疾患領域はどう選ぶ? 新規薬剤や新たな事業領域の開発を考える際、まずは対象となる疾患領域を絞り込む必要があります。さらに、その絞り込んだ後のポピュレーションや、疾患の重篤度、患者数、事業性、競合環境など、さまざまな切り口からニーズの有無を検証することが求められます。 課題分解は的確か? また、課題をどのように分解し、分解が適切に行われているかを意識することも重要です。一人で考え込むのではなく、メンバー間で様々な視点を共有し、切り口のアイデアやモレ・ダブりの有無を話し合いながら進めていくことが効果的だと感じました。

データ・アナリティクス入門

多面的な視点で採用戦略を刷新する

多面的な思考の大切さとは? A/B評価の考え方を取り入れて、多面的な思考を心がけたいと思います。品質、コスト、納期、環境、安全の各切り口からプロセスごとに要因分析を行うだけでなく、仮設に関する健全性や生産性、環境適応性といった視点でも考える習慣を持ちたいと考えています。 データの使い分けが成功の鍵? 採用市場に関わるデータについても、定性・定量、生・加工、一次・二次といった種類を使い分けることが重要です。切り口を変えて物事を見つめることで、得られた傾向の意味や仮設の証明に役立て、それを戦略立案(例えば、人材獲得へのプロセス)に反映させたいと思います。 データで採用プロセスを進化させるには? 採用活動やプレ期活動を念頭に置き、現在の採用プロセスの課題抽出と環境変化への早期対応にデータ分析力を活用したいです。この分析を通じて、関係部門の協力を得られる方針や実行計画をブラッシュアップし、組織の財産として残したいと考えています。

アカウンティング入門

数字で読み解く経営の裏側

P/L構成の意味は? P/Lの構成については理解していたものの、自社のP/Lを単に作成するだけでは、営業損益、経常損益、当期純利益それぞれがどのような理由でその数値になっているのか、十分に考察できていなかったことに気づきました。そこで、同業他社や他業種との比較、比率や過去の推移を分析することで、各損益数値が示す背景や原因、さらには対策まで具体的に検討できる力を身に付けたいと考えています。 計画策定はどう進める? また、経営陣や投資家に説明するための事業計画を策定する際には、単に「この計画になりました」と報告するのではなく、望むべき将来像を実現するためにどのようなマイルストーンを設定し、それに向けてどのような行動を取るべきかという視点を持ちたいと思います。 数値の背景は何? さらに、社内の研究部門や営業部門とのヒアリングを通して、予測される数値や決算数値の背景にある原因をしっかりと把握することも重要だと考えています。

クリティカルシンキング入門

アウトプットで開く成長の扉

問いの順序は何故? まず、どんな問いを立てるか、どのような切り口で分析するかを考える順序が非常に重要であるということを実感しました。その後、ただインプットするだけではなく、アウトプットを通じて実践することの大切さにも気づかされました。 意見交換の意味は? また、アウトプットの機会として他者とのディスカッションを取り入れることで、自分だけでは思いつかなかった考え方に触れ、フィードバックを得ながら自分の考えを見直すことができました。こうしたサイクルを継続することで、着実に力をつけていくのだと理解しました。 学びをどう活かす? これまで、自分の担当する業務に関連する資料を読んで理解を深めることに注力していましたが、アウトプットを意識していなかったことに気づかされました。今後は、知識を単に吸収するだけでなく、それが業務にどう活かされるのかを常に考え、疑問やアイディアをもとに周囲の人々と意見交換をしていきたいと思います。

データ・アナリティクス入門

比較のレパートリーを増やす意味

分析の目的は何か? 人によって着眼点が大きく異なるため、自分が分析したい目的や伝えたい相手の視点に沿った比較対象を見つけることが非常に重要であると学びました。受講前は、分析手法やデータ収集、整理が重要と考えていましたが、実際には目的設定や比較軸の決定がより重要であると感じました。 営業での活かし方は? この知識は、他者との提案時の競合価格比較や、営業時の他社比較資料の作成に役立つと考えています。特に営業現場では、価格以外の定量的な部分でどれだけ差異をつけられるかが非常に大切です。このような場面で活用していきたいと思います。 比較軸をどう増やす? まずは比較軸のレパートリーを増やすことを目指します。今回の講座で学んだ、特定条件の有無による比較に加え、他の方の意見や視点を積極的に取り入れ、より多くの軸を自分の中に取り込んでいきたいです。そうして得た軸を活用し、より目的に合ったものを選定できるよう努めていきます。

データ・アナリティクス入門

データでつかむ共感と納得

データ分析の意義とは? 「分析とは比較なり」と分かっていても、その意味を他の人に伝えるのは別の課題です。結果的に、データ分析の意味とは何を目的にし、どこに活かすかであると改めて実感しました。また、適切なデータ選びと結果の見せ方も理解に大きく影響を与えることを痛感しました。 分析結果をどう伝える? これまでのデータ分析は、自分が次の戦略を考えるために、自分が理解することを前提にしていました。しかし、考えたプランが良くても、納得や共感を得られなければ意味がありません。多くの人に理解される分析を心掛けるべきであると感じています。 経営戦略に重要なデータ選び データ分析のプロセスを含めて、しっかりと説明できることが重要な前提です。正しい経営戦略を考えるためには、どのデータを重視し、補足できるデータを選ぶかが鍵であり、会社の進むべき方向性を理解してもらうために、方向性を一致させる納得感の高いアウトプットを意識します。

クリティカルシンキング入門

切り口を広げる学びの一歩

全体像はどう捉える? データ分析を行う際は、まず全体像を定義し、その上で各要素に分解して考えることが重要です。分解の際には、MECEの状態を目指しながら、what、where、when、howといった切り口や、要素別、ステップ別といった手法を用います。たとえば、年齢という切り口でも、単純に10代、20代と分けるのではなく、18歳まで、22歳まで、23歳以上といった意味を持たせることで、傾向が把握しやすくなります。 異常検知の視点は? 品質管理の現場では、異常を検知した際にその原因を漏れなく洗い出し、特定するためにMECEの考え方が役立ちます。加えて、全社で実施されるエンゲージメントサーベイでは、さまざまな属性を切り口にデータの傾向を掴むことで、改善のための具体的な計画を立てる取り組みを実践しています。 このように、複数の切り口の中から目的に合ったものを選択するには、一定の経験が必要であると実感しました。

アカウンティング入門

利益のカギを探る!P/L徹底分析の旅

P/Lの構造を理解するには? P/Lの構造を理解できたと思います。会社が利益を出すためには、ターゲットとする顧客や提供価値をブレずに一貫性を持って進めることが重要だということがよくわかりました。P/Lの数字の意味を考えながら、今後も学習を続けていきたいです。 利益の源泉をどう捉える? 自社のP/Lを詳細に読み込み、利益の源泉や問題点を現時点よりさらに深く理解したいと思います。そして、その問題点に対して、売上増や変動費の削減といった具体的な解決策を考え、自分がまず何をすべきかをアイデアとして出したいです。 自部門の数字をどう理解する? まず、自部門の数字の意味を深く理解する必要があります。そのため、腑に落ちるまでP/Lをしっかりと読み込み、分からないことがあれば書籍や人に聞くなどして解決します。本講義が終了するまでに、自部門の問題点に対する解決案を最低3つは会社に提案して実行したいと思っています。

クリティカルシンキング入門

イシュー共有で本質に迫る

イシューの意味は? 「イシュー」とは「いまここで答えを出すべき問い」であり、その重要性を実感しました。問いが誤ると論点がずれ、共通認識が形成されなくなるため、イシューを共有し本質を意識することが、具体的な課題解決や施策につながると考えています。 課題共有はどう進む? IT業界においては、顧客からの課題相談が頻繁に寄せられるため、まずはイシューを明確にして共有することから取り組みたいと思います。共有をせずに解決策だけを模索すると、後に認識の齟齬が生じ、根本的な課題解決につながらない恐れがあります。 本質解決は可能か? 業務では、本質的な課題が誤ると顧客が期待する解決が果たせず、結果として不適切なITシステムが提供される恐れがあります。そのため、単に解決策のみを提案するのではなく、イシューを踏まえた本質的な課題解決を追求することで、真に必要なITシステムの提供が可能になると考えています。

データ・アナリティクス入門

平均で解く成長のヒント

各平均の意味は? 今回の学習では、平均の種類について再確認できた点が非常に印象的でした。単純平均だけではなく、幾何平均や加重平均といった、数字の根拠となるデータや分布の理解が求められる手法について、より深く考える機会となりました。 成長率の計り方は? また、期間全体の成長率を表現する方法が実践可能であることを知り、これまで感じていた疑問が解消されました。具体的には、自身の業務において商品のサイズ構成比や部署の成長率を算出する際、全体の加重平均や過去数年の傾向を示すための幾何平均が有用であると感じました。 実践スキルの磨き方は? とはいえ、数式自体は難しく感じたため、今後はエクセルを使用した計算方法など、より実践的なアウトプットスキルを磨く必要があると思っています。プレゼンテーションや説明の際に、根拠となる平均値を具体的なグラフなどで示せるよう、引き続き学びを深めていきたいと考えています。

データ・アナリティクス入門

変数分解で広がる学びの可能性

MECE活用の秘訣は? 問題解決を行う際は、もれなくダブりなく切り分けた状態でMECEを意識し、ロジックツリーを活用してアイデアを出すことが大切です。分解方法としては、層別分解と変数分解があり、様々な切り口で意味ある分類を行うことが求められます。最終的に一つの案に絞る際は、ロジックツリーで複数の案を出した後、評価基準に基づいて選定する手法が有効だと感じました。今回、これまで慣れていた層別分解に加え、初めて変数分解での案出しを実践してみることにしました。 品質改善はどう考える? 製造業での品質不良分析や、売上向上を目的とした修理データの分析にも、MECEやロジックツリーを用いた要因分析が役立ちます。たとえば、層別分解では製品別や地域別で分類し、変数分解では客単価×客数や数量×単価といった切り口を採用できます。これにより、不良の原因を網羅的に洗い出し、的確な対策を立案することが可能となります。

「考え × 意味」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right