デザイン思考入門

完璧求めず、共に進む学び

最初から完璧でいいか? 自身の業務を通じて、最初から完璧を求めすぎると時間をかけすぎるという課題に気づきました。自分一人で100%だと考えて作成しても、周囲からのフィードバックにより改善点が明らかになることが分かりました。そのため、最初から完成形を目指すのではなく、施策を実施しフィードバックを受けるサイクルを取り入れることでスピードを重視することの大切さを実感しました。 意見共有で成長する? また、皆で意見を出し合いながら改善を重ねる方法が、より良い成果や組織の育成につながると気付きました。反対に、対応が遅れると他者が先にアイデアを提示してしまったり、完成形に対する認識のズレが生じるリスクがあることも理解しました。 生成AIの活用ってどう? さらに、デザイン思考はモノ作りに限定されるものではなく、サービスや組織づくりにも応用できるという新たな視点を得ました。最近では生成AIが手軽に利用できる環境が整っており、未経験の分野でもアイデア出しやイメージの作成、迅速な改善が可能になっているため、この技術も積極的に活用していきたいと考えています。 正解は一つならない? デザイン思考は正解が一つではない分野です。誰に届けたいのか、相手にとって何が最善かという人間中心の視点を忘れずに、押し付けがましくならないように心掛けることの大切さを、アウトプットの際に改めて認識できた良い学びとなりました。

戦略思考入門

現場で光る経済性マジック

コスト削減の学びは? 儲けを出すための基本はコスト削減ですが、今回の学びでその具体的な方法を体系的に理解することができました。 生産性向上のカギは? 特に、生産性については普段から意識している点であり、新規業務の場合は経験曲線により数ヶ月で生産性が向上する傾向にあるものの、一定以上向上するとその後の改善は緩やかになり、事務作業ではミスが増える可能性があるという現実を再確認しました。 範囲の経済性はどう見る? また、コスト削減の手法として範囲の経済性にも着目しました。従来は大規模な分野でしか効果を感じられなかったイメージでしたが、人員配置なども十分に効果を発揮することに気づき、私自身の多くの異動経験から、有形無形の両面で考慮する必要性を感じました。 ネットワークの魅力は? さらに、ネットワークの経済性についても非常に興味深く学びました。魅力的なサービスはまずユーザーを増やし、一定数に達すると更なる利用者の拡大が促進される仕組みには大きなインパクトを受けました。 実践で活かす工夫は? 現職では、複数部署での経験を活かして、システムや方法などの有形なリソースを現部署で活用できないか検討する機会がありました。また、新規受託のオファーがある一方で人員が不足している現状を踏まえ、業務を細分化して他の業務と組み合わせるなどの工夫により、限られた人員でも対応を可能にする方法を模索しています。

データ・アナリティクス入門

幾何平均に出会った瞬間

代表値の選び方は? データの分布を把握する際、代表値の選び方は非常に重要です。平均値は外れ値の影響を受けやすいのに対し、中央値はその影響が少なく、より正確な中心傾向を示すことがわかりました。また、平均値には単純平均、加重平均、幾何平均の3種類があるという点も新たな発見でした。特に成長率の変化を評価する場合に利用される幾何平均という概念は、初めて聞いた言葉で印象に残りました。 散らばりはどう測る? 一方、データの散らばりを確認する方法として、数値で表す場合は標準偏差がよく用いられ、また、ヒストグラムなどの可視化手法が直感的な理解に役立つことが理解できました。 分析の視点は何? これまでのデータ分析では、単純平均と加重平均に頼る傾向がありましたが、今後は中央値やヒストグラムといった手法も積極的に活用し、データの特徴を多角的に捉えていく必要があると感じています。さらに、これまで分析の選択肢に含めてこなかった幾何平均にも意識的に取り組み、より正確な分析を目指したいと思います。 BIツールの使い方は? また、BIツールを活用して経営ダッシュボードを構築する際には、代表値と散らばりの両面からデータをビジュアルに表示できるよう工夫していく予定です。 幾何平均はいつ有効? 今後は、幾何平均がどのような場面で最も有効に働くのか、具体的な利用シーンについても更に知識を深めたいと考えています。

クリティカルシンキング入門

未来のリーダーを目指して学びましょう

キャッチーな見出しで意図を明確に 数値等を用いた資料を作成する際には、伝えたい意図を明確化するキャッチーな見出しを使うことが大切です。また、適切なフォントを利用し、ケースバイケースで適宜グラフを活用することも重要です。相手に読んでもらえる文章作りを意識しながら、分かりやすさを追求しましょう。 投資付議の資料はどう作成すべき? 投資付議の資料作成においては、比較表の選択がポイントです。丁寧に時間をかけて資料を作成することで、より納得感のある提案ができるでしょう。また、報告時間が決まっている定例会や分科会での資料作成時には、数分で相手の頭に残るスライドを作成することを意識する必要があります。 フォント選びの工夫は? フォント選びについては、会社の方針に従い、派手なフォントは避けるべきです。しかし、資料が単調にならないように、太字やフォントの大きさを調整して工夫しましょう。 見出しとグラフ、どう活用する? 見出し作成においては、伝えたい意図を最初に決めておき、その後で見出しを作成すると良い資料ができると感じました。グラフの活用については、エクセルでの様々なグラフを試しながら習熟度を高めていくことが有効です。 ChatGPTをどう利用する? 相手に読んでもらえるような文章を作るためには、情報量が多くなる場合にChatGPTなどを利用して添削・整理すると良い方法だと感じました。

データ・アナリティクス入門

問いを絞れば未来が見える

イシューの本質は? まず、データに飛びつく前に、何に対して答えを出すのかという根本的な課題―イシュー―を明確に整理することが大切です。イシューは、Yes/Noといった二つの選択肢程度に絞ることで、分析がしやすくなります。 数値比較の意味は? 次に、単一の数値だけでは状況が判断しにくいため、2つ以上の数値を用いた比較分析の重要性が浮き彫りになります。この手法により、数値同士の関係を明確に理解し、正しい判断を導き出すことができます。 業務シーンはどう見る? 業務シーンでは、キャパシティプランニング、リリース影響の判定、障害対応時の原因切り分けなど、様々な場面でこの考え方が活用されています。特にキャパシティプランニングの場合、ただ「リソースは足りているか?」と漠然と問いかけるのではなく、「現在の増加ペースが続いたとして、3ヶ月後にもリソースが十分確保できるか?(Yes/No)」と問いを明確にすることが求められます。 予測と対策はどうする? 具体的な取り組みとしては、過去のトレンドから3ヶ月後の予測使用量を算出し、実際に利用可能な物理的リソースの上限値と比較します。もし予測値が上限に近づく、または超える場合はリソースの増強が必要であると判断し、迅速な対応を実行していくこととなります。このプロセスを繰り返し実践することで、業務全体の質の向上につながっています。

クリティカルシンキング入門

じっくり考えるMECE習慣

なぜじっくり考えるの? 無意識に考えやすいことをそのまま答えとしてしまう傾向に気付き、まずは意識的に立ち止まってじっくり考えることの大切さを実感しました。自分自身の思考パターンを見直す中で、視点を変える努力の必要性を改めて感じる機会となりました。 MECEの活用はどうする? また、MECE(モレなくダブりなく)の概念については、業務である程度使ってはいるものの、まだ十分に活用できていない部分があると感じました。そこで、隙間時間を利用して紙にさまざまなMECEのパターンを書き出すなどの方法で、頭の中でも自然にMECEの考え方が活用できるよう練習を続けたいと思います。 資料整理の秘訣は何? 加えて、MECEの活用は構成や話の流れを明確にし、プレゼンテーションや報告資料作成時に「段落ごとに重複がないか」「カバーできていないポイントがないか」を点検するのに非常に役立つと実感しました。こうした整理の方法を仕事に取り入れることで、より論理的な資料作成が可能になると期待しています。 問題解決はどう導く? さらに、ロジックツリーについても、自分の日々の課題にどのように活用できるか、またどんな種類の問題解決に特に効果があるのか、しっかりと考えていく必要性を感じました。自分自身の業務にどう落とし込むかを意識し、効率的な問題解決の手法として今後も活用していきたいと考えています。

クリティカルシンキング入門

データ分析で見つけた新たな視点と発見

データ加工の真実は? データの加工によって、見えてくる事実や印象は大きく変わるものです。「数字は嘘をつかないが、詐欺師は数字を使う」との言葉がありますが、まさにその意味を実感しました。情報は、どのように分解するかによって、判明する内容に差が出ます。ただし、最初から適切な区分けを定義することは難しく、仮説に基づいた検討になりがちです。そのため、区分けをできるだけ小さな単位で行い、グラフ化や計算によって傾向を見出すという方法が現実的です。 異軸の関係は? 一つの軸で明らかになった事実を他の軸と結びつける際には、それらの軸がどのような関係にあるのかを考慮する必要があります。全く異なる軸同士の場合、それらを組み合わせて四象限にするなどの工夫が求められます。 ログ分析で何が? 私は現在、自社サービスの顧客の利用状況をログで分析し、利用状況に問題がないか確認する工程に取り組んでいます。その結果に基づき、さらにARPU向上を提案しています。このデータ分析には、今回学んだ分解する観点を活用したいと考えています。 新データの可能性は? 先週、新しい利用状況データを取得できたため、来週にその分析を実施する予定です。この新しいデータは、これまでのものよりも詳細で、分析する軸が多岐にわたります。今回学んだ、複数の軸の関連性を考慮した事実抽出の手法が、大いに参考になりそうです。

データ・アナリティクス入門

小さな実験、大きな発見

テスト比較の狙いは? A/Bテストでは、施策の比較効果を検証するため、比較対象のグループ間での差異を可能な限り限定することが重視されています。例えば、目的や仮説を明確にし、検証項目をしっかり設定することが大切です。また、テスト対象は1要素ずつに限定するべきであり、複数の要素を同時に検証したい場合は、別の手法を検討する必要があります。さらに、比較実験は同時期に実施することで、外部要因の影響を排除する狙いがあります。 利用段階の課題は? ファネル分析については、ユーザーの利用段階ごとに各プロセスを分解し、どの段階で離脱が発生しているかを明らかにする手法です。デジタルマーケティングでの活用は非常に効果的ですが、営業活動における利用も十分に期待できると感じました。ただし、営業活動の場合は、各担当者が利用プロセスや各段階(Stage)の定義を正確に理解し、適時更新することが不可欠です。例えば、Stageの更新が一度に行われる場合や、同一状況でも担当者によって判定が異なる場合、分析の精度が低下する恐れがあるため、その点に留意する必要があります。 全体の改善点は? さらに、Top、Middle、Lowパフォーマー各グループでの離脱状況の違いや、全体で共通して離脱が目立つ段階を把握することで、どの段階に改善の余地があるのか具体的に見極めることができると考えました。

クリティカルシンキング入門

エクセルで広がる!学びの新発見

エクセルとグラフの効果は? エクセルシートの活用方法について学んだことは、非常に奥が深く、多くの発見がありました。特に、データの見える化をグラフで実現することは非常に参考になりました。また、データ分析で迷ったときには、まずはデータを分解してみることが重要であるという点も、教材を通じて反省しました。後半のMECEに関する学びでは、経営戦略のツールとしての利用に関して、どのステップで役立つのか、構成要素を分解して考える視点が大変有益でした。 分析視点の工夫は? これらの学びを基に、大学の在学生や入学生の分析に活用してみたいと考えています。特に、入試ごとの分析視点が不十分であったため、同僚とともにいくつかの切り口を考え、層別や変数の分解を試みるつもりです。また、プロセスを分解し、ペルソナを設定することで、大学進学を考えた段階から最終的な進路決定に至るまでの過程の分析を試みたいです。 広報と全体の関係は? さらに、「全体を定義する」ということの重要性についても意識が深まりました。これまでは、学生がオープンキャンパスに参加し、その後出願するという単純な流れを考えていましたが、実際には学生が興味を持ち始めるタイミングで、どのように大学の認知度や魅力を伝えるかが重要だと感じました。そのため、進学先を決定するプロセスにおける効果的な広報活動の必要性を強く感じています。

戦略思考入門

現場で発見!経済の秘密

規模と習熟は何が違う? 事業経済性として、規模の経済性、習熟効果、範囲の経済性、ネットワークの経済性の4点を学びました。まず、規模の経済性は、事業規模が大きくなることで、1製品あたりのコストが低減される点に着目します。次に、習熟効果では、長期間の経験蓄積によって無駄が省かれ、プロセスの効率化や歩留まりの向上が進むことで、単位あたりのコストが下がる仕組みを理解しました。また、すでに保有する資源を他の事業に活用することで全体のコスト削減につながる範囲の経済性や、利用者が増えることで各利用者にとっての利便性が向上し、顧客獲得やサービス提供のコストが低減されるネットワークの経済性も学びました。 現場の数字はどう見る? サプリメント業界は食品業界の中でも比較的利益率が高いにもかかわらず、原材料費の高騰が続く中で、事業経済性への注目が重要だと感じました。特に、製造現場における規模の経済性と習熟効果が大きな影響を与えていると実感しています。毎年の予算編成で、営業やマーケティングに対する大きな予算が取り上げられる一方で、生産現場の数字はあまり議論に上がらない現状についても興味を持ちました。製造現場の経済性を正しく理解することにより、どの程度の予算を製品のマーケティング活動に充てるか検討できるため、ビジネス全体の流れを把握する視点を今後もさらに深めていきたいと考えています。

クリティカルシンキング入門

数字の裏に隠れる小さな真実

数値分解の意義は? 数値を細かく分解・加工することで、見落としがちな示唆を得る可能性があります。また、数値はグラフ化することで、より分かりやすく伝えることができます。分析の際は、「誰が」「いつ」「どのように」という多角的な切り口を用意しておくと効果的です。 分解作業の狙いは? 今回のワークは、与えられた数値をどのように分解するかに焦点を当てました。アンケートの設計・配信・分析といったタスクにおいては、どの切り口でどのような分析を進めるか全体像を押さえつつ、選択肢を適切に分解しておかなければ、いくらデータを集めても活用できないリスクがあります。 仮説検証はどう? また、新しい発見がなくても、今回の分解作業で得られなかった知見を学びとして前向きに捉えることが大切です。単にアンケートを配信するのではなく、小さな仮説検証を重ねることで、より精度の高い内容にブラッシュアップしていくことが求められます。 生成AIの使い方は? まず、全体像を明確に定義した上で、生成AIを活用しながらアイデアを整理します。その後、専門知識を有する関係者と確認を行い、情報が重複せず整理されているかをレビューしていきます。 基本属性の整備は? さらに、顧客の基本属性については、共通の型として整備し、自分だけでなく部署全体で再利用できるように準備を進めています。

データ・アナリティクス入門

データ分析で見えた本当の価値とは

データ分析の目的を明確に データ分析は、目的を持たずに取り扱うと、ただの意味のない数字でしかありません。そのことを今回の学習で目の当たりにすることができました。データ分析を行うにあたっても、なぜその分析をするのかという背景が見えなければ、同じ数字でも全く違った見え方をしてしまいます。そこで重要なのは、何を目的として分析を行うのかを明確にすることです。目的意識を持ち、定量的にデータを取り扱うことの重要性を学びました。 データで組織をどう活性化? 施策推進について考えると、個々の受付完了指標から組織や部単位での比較まで、データの切り口は多岐にわたります。組織が正常に稼働しているか、個人については「自分は頑張れているか」を評価することができます。さらには、何をもっと伸ばし、何を改善すべきか、メンバーのモチベーションの維持・向上のためにデータを利用したいと考えています。 データの伝達手段は? データを出すタイミングについては、デイリーにするか毎月末にするかなど様々な選択肢があります。組織やプロジェクトチームが活性化するための指標として、データを積極的に活用していきたいと考えています。データの伝達手段もまた多様で、メールや対面、ミーティングなどがあります。伝えたい内容、そのボリュームや重要度に応じて手段を使い分け、効果的に展開していきたいと思います。
AIコーチング導線バナー

「活用 × 利用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right