戦略思考入門

定量と定性、価値のバランス探求

定量的評価の重要性とは? 優先順位を考える上で、時間あたりの利益額などの定量的評価項目を取り入れることが重要だと感じました。これが判断基準として利用しやすいと感じた一方で、利益などの目に見える価値だけでなく、見えない付加価値を一律に切り捨てることにもなりかねないので、注意が必要だと思います。定量的価値と定性的価値のバランスを取るために、価値創造ストーリーというような大きなストーリーの軸があった方がいいのではないかと考えています。 グループ会社でのリソース配分は? グループ会社の今後の事業展開について、事業の選択と集中、リソースの配分方法にこの考え方を活用したいです。ただし、その議論を行う前に、その会社がどのような会社でありたいのかという軸を明確にしておかないと、上述のバランスを取るのが難しくなりそうです。この部分についてのコミュニケーションも必要だと感じました。 中期経営計画での対話のコツは? また、中期経営計画のコミュニケーションにおいて、これらに関連した問いを発することが重要です。限られた時間の中で、個別の担当者や経営層とのコミュニケーションを層別に行い、議論すべき内容を明確にして話し合うことが、より時間を有効に活用するために有益だと思います。

データ・アナリティクス入門

分けて比べる!分析の真髄

4段階は何を示す? 4段階の仮説→検証→改善策立案を、具体例を交えて説明していただき、各段階での重要なポイントが明確になりました。自己流や独学で試行してきた私にとって、とてもありがたく、有意義な時間となりました。 分け比べで何が分かる? 初回から印象に残ったのは「分けて比べる」という考え方です。繰り返し実践することで、分析の本質を実感できるようになりました。 データ選択はどう考える? また、社内で適切なデータを選び出す際には、データが目指すべき姿を示しているのか、あるいはデータ自体が何を表しているのかをしっかりと見極め、指標として活用する重要性を感じました。眺めるだけでなく、常に目的意識を持ってデータに向き合うことが大切です。 自社データ整備はどう? まずは自社データの整理を行い、そこからカテゴライズやインデックス化を推進し、目的別にすぐ利用できる状態を整えたいと考えています。また、データの整え方や代表値の種類、グラフ化、ピボットテーブルの加工方法など、基礎的な手法を部内にレクチャーすることで、自分自身の理解不足や弱点を洗い出し、互いに教え合いながら、数ヶ月後にはみんなが同じ目線で分析結果を議論できる環境を作り上げたいと思います。

アカウンティング入門

図解で広がる学びと戦略の扉

図式の効果は? PL、BS、CSをつなぐ図式は非常に参考になりました。各要素の関係がわかりやすく示されており、文字情報だけでは得にくい理解が深まりました。テキスト情報も大切ですが、図式を効果的に用いることで、知識の習得が一層進むと感じました。今後は、すべての要素を図式化できるよう、各要素のつながりを意識して学習していきたいと思います。 知識活用はどう? 知識そのものは、事業構造や実態の把握に基づいた戦略の提言や予算策定などに活かしていきたいと考えています。その際、利害関係者に分かりやすく伝えることが重要だと感じています。また、部下のレベルアップのために、自分自身が良き指導者となり、効果的な教え方の方法論を身につけていくことも目標です。 議論の進め方は? さらに、業務上で体験した新たな知識を、AIを利用して検証することが好きです。物事の本質を把握し、その意味をAIとのディスカッションで深めることは非常に有効であり、楽しい取り組みです。知らないことや本質、定義が曖昧な知識に気づいた際は、すぐに議論を行うようにしています。これまでは単発的な知識に焦点を当てていましたが、今後は体系化や方法論についても積極的に取り組んでいきたいと思います。

データ・アナリティクス入門

問題解決に役立つフレームワーク活用の重要性

問題解決プロセスの理解を深めるには? 問題解決のプロセスについて理解が深まりました。解決策の立案である「how」を先に考えてしまいがちですが、4つのステップに沿って進める習慣をつけたいと感じました。 ロジックツリー活用の可能性とは? フレームワークのロジックツリーやMECEはこれまで使ったことがなかったため、仕事で活用してみたいと思いました。層別分解や変数分解は初めて耳にしましたが、分析手法を学ぶことで今後の業務に非常に役立つと感じました。 新規事業に必要な問題解決プロセス 実証実験で行うインセンティブ設計などにロジックツリーやMECEを利用できると感じます。また、問題解決のプロセス自体も、新規事業を作る上で非常に有効だと考えています。解決策にばかり目が行きがちですが、問題の本質や発生原因を改めて考えることが重要だと認識しました。 事業モデルをどう整理し直す? まずは、現在の事業モデルを整理し直すことから始めようと思います。そして、あるべき姿と現状とのギャップを埋める施策になっているかどうかを見直します。また、ロジックツリーやMECEは日常でも応用できるため、日頃から積極的に使用し、業務でも自然に活用できるようになりたいです。

データ・アナリティクス入門

仮説と検証で切り拓く成長

問題発見はどう進める? 問題の原因を探るため、まずプロセスごとにアプローチする手法を学びました。その中で、A/Bテストを活用し、仮説を立てた上で実際に検証を重ねる方法が効果的であると理解できました。また、総合演習を通して、これまでの学習内容を振り返り、自分の知識を整理する貴重な機会となりました。 仮説検証は効果的? データ分析においては、目的を明確にし、分析に入る前に仮説をもつことの重要性を再認識しました。分析プロセスを着実に進めるとともに、効果的な切り口でデータを把握することが求められると感じています。取り組んでいるサービスのユーザ活用場面を拡充するためには、利用シーンをプロセスに分解し、それぞれを検証した上で改善策を策定することが必要です。 分析の進め方は? 具体的には、各プロセスに対して適切なデータを条件を揃えて抽出し、抜け漏れなく検証を進めることが求められます。改善策を検討する際には、複数の選択肢を根拠に基づいて検討し、基準を設けることで効果的な施策に絞り込むことが重要です。また、分析作業は複数のメンバーで進めるため、作業開始前に目的や意味合いを共有し、各メンバーが同じ認識で取り組むことにも留意すべきだと実感しました。

データ・アナリティクス入門

論理と仮説で挑む解決の道

どうして仮説思考? データ分析においては、目的を明確にし、仮説思考で取り組むことが重要だと再認識しました。問題解決のステップを復習・整理する良い機会となり、筋の通った仮説を立てるためには、多面的な視点からロジックツリーを活用することが有効であると実感しました。一方で、可能性のある原因を網羅的に洗い出すという点ではまだ苦手意識があるため、今後も意識的に仮説思考の習慣を身につける必要があると感じました。 離脱上昇の背景は? 自社のSaaSプロダクトの中では、あるものについて利用者の離脱率が上昇している現状を踏まえ、本講座で学んだ問題解決のステップを振り返りながら検討を進めています。複数の解決策を洗い出すことができたら、それを今期の重点施策として実施し、PDCAサイクルを回す計画です。 論理思考がなぜ大切? これまでの取り組みでは、なんとなくデータを眺め、漠然とした仮説に基づいて解決策を考えてきました。しかし、本講座を通じて、論理的な思考と筋の通った仮説検証こそが、問題解決に直結する重要なプロセスであることを学びました。また、取り組みの中でミーティングを通じてチームメンバーとアウトプットや意見交換を行うことの大切さも実感しました。

データ・アナリティクス入門

継続の秘訣は仕組化にあり

継続の鍵は何? これまでの学びの振り返りや今後の意気込み・取り組みについて考えた結果、結局は「いかに仕組化して継続できるか」が鍵だと感じています。 取組内容は? 課題で記したとおり、以下の3点に取り組んでいきたいと思います。まず、パワーポイントを用いて自分の学びを整理してまとめます。次に、使えそうなフレームワークをエクセル形式に変換し、デスクトップに保存しておくことで、漏れなく効率的に要因分析や仮説構築に役立てたいと考えています。さらに、各種企画業務(分析、調査、議論、仮説構築、意思決定など)に集中できるよう、日々の業務の効率化にも注力していくつもりです。 なぜエクセルなの? 特にエクセルフォーマットにしてデスクトップに保存する枠組みは、「なぜそれが起こっているのか?」という問いに対して、常に使えるツールとして位置づけたいと考えています。学びの内容をパワーポイントでまとめ、エクセルでフレームワークを整備する作業は、受講者画面が利用できなくなる前に、週末などを活用して進める予定です。 共有準備は? また、学びのまとめについては、部署内のミーティングで共有することを目標とし、6月中に実施できるよう計画的に準備を進めていきます。

アカウンティング入門

数字が示す経営判断のヒント

財務への洞察は? これまで財務諸表の作成業務に携わってきたため、今回の内容自体に新たな発見はあまりありませんでした。しかし、「財務諸表を利用して経営判断を行う」という視点の重要性を改めて実感する機会となりました。これからは、数字が示す意味をより深く理解し、その知見を経営に活かしていく姿勢を大切にしていきたいと感じています。財務情報を単なる報告書類ではなく、経営の意思決定を支える貴重なツールとして活用することが、自己の成長に直結していると実感しました。 説明をどう伝える? また、今後の取り組みとしては、まず全社ミーティングにおいて財務状況を社員に丁寧に説明する場面で、数字の意味や背景をわかりやすく伝えていくことに注力します。さらに、B/SやP/Lの数字が何を表しているのか、会計に直接関わらない社員にも理解できるよう工夫を重ね、説明の質を向上させることを目指します。 数字の意味を考える? 最後に、自分自身が財務指標を読む際には、常に「この数字は現場や社員にとってどのような意味を持つのか」を考える習慣を身につけるよう努めます。社内ミーティングの前には、視覚的に理解しやすい簡単なスライドや図解を作成するなど、工夫を凝らしていく所存です。

リーダーシップ・キャリアビジョン入門

現場で輝くエンパワメントの秘訣

エンパワメントの本質は? エンパワメントには、自立性の促進と支援という2つの要素があることを学びました。現代では、命令管理型のアプローチが通用しにくく、エンパワメント型のリーダーシップが求められていると感じます。 利用シーンはどう? しかし、エンパワメントが有効な場面と、ミスが許されない状況とでは、使い分けが必要であることも理解しました。常に適切なエンパワメントを実施するのは難しいものの、相手の状況や能力を把握することはリーダーシップを発揮する上で共通して大切な要素だと思います。 背景はどんな理由? 実際、担当先でタッグを組んでいる後輩や、同規模の担当先を持つ同僚に指示を出す際にエンパワメントを活用することで、モチベーションが高まり、結果的に業務の効率化と高質化につながると感じました。メンバーそれぞれの長所と短所を把握し、適切に役割分担をすることが重要です。 具体例は何? なお、私自身は営業職のために目標設定が比較的明確ですが、業務内容の具体化が難しい分野で活動されている方も多いのではないでしょうか。各自の業務で具体化に苦慮される部分や、目標設定に当たってのポリシーがあれば、ぜひ教えていただけるとありがたいです。

クリティカルシンキング入門

デジタルツール活用で効率アップした話

オンライン学習のメリットは? 私はオンライン学習サービス「ナノ単科」を受講して、非常に有意義な時間を過ごすことができました。この講座では、最新のビジネス知識やスキルが学べるだけでなく、実際に業務に応用できる実践的な内容が豊富に含まれていました。具体的には、**デジタルツールの活用法**や**データ分析の基本原則**など、仕事に直結する知識が多く、業務効率の向上に役立っています。 ストレスフリーな学び方とは? 講義はオンライン形式なので、自分の都合に合わせて学習を進められる点が良かったです。また、テキストの内容がわかりやすく、動画講義も見やすい構成でストレスなく学べました。 業務への応用で得た成果は? さらに、ナノ単科を通じて得た知識を業務に活かすことで、自分自身のスキルアップを感じることができました。講義内容を実際の業務課題に応用する際の具体的なアプローチ方法も紹介されており、実務との結びつきが非常に強い点も評価できます。 このように、ナノ単科は自分のペースで学びながら、実務に直結するスキルを身につけられる優れたオンライン学習サービスだと思います。今後も継続的に利用して、さらなるスキルアップを目指したいと考えています。

データ・アナリティクス入門

1月の謎に挑む!仮説力の全貌

仮説の違いは何? 仮説を立てる際に活用できるフレームワークについて、改めて学ぶ機会となりました。そこで、結論としての仮説と、問題解決のための仮説という2つの考え方があることを理解しました。また、問題解決プロセスにおいては「where(どこで)」「why(なぜ)」「how(どのように)」の視点を意識することが重要だと認識しました。 利用状況変化はなぜ? 具体的な事例として、12月から1月にかけてサービスの利用状況が低下した際の対応を検討しました。結論の仮説としては、長期休暇中にサービスから離脱が起きたという点を重視しました。同時に、特に正月期間にユーザーの離脱、すなわちチャーンが発生した可能性に着目し、問題解決に向けた仮説を立てました。さらに、年末年始の背景を踏まえ、プッシュ通知などでログインを促す導線を作ることが有効ではないかという仮説も検討しました。 データで何が分かる? 加えて、12月から1月のサービス利用状況について、デイリーベースでデータ分析を実施しました。離脱ユーザーの属性やこれまでの傾向を可視化するとともに、プッシュ通知などのお知らせがログインのフックとして機能するのかをテストする工程を経ました。

データ・アナリティクス入門

数字が語る業務改善のヒミツ

データの集約ってどうやる? データの比較法について、数字を集約して捉える方法、目で見て捉える方法、そして数式を用いて集約し関係性を把握する方法を学びました。普段何気なく実施していることの意味を理解することで、さらに大きな効果を得られる必要性を感じています。 代表値と散らばりの活用法は? また、データ加工のポイントとして、代表値と散らばりの両方を活用する事例を学びました。双方の特性を活かした可視化を上手く利用できれば、より具体的な分析が可能になると実感しています。 工数計算の見直しは? 業務改善の際に、工数の計算方法が一面的であったことにも気付きました。関わる人数や各作業の分析データが欠けていたため、今後はこれらの情報収集にも注力し、ビジュアル化した際の分析範囲を広げる可能性を感じています。 収集データの過不足は? さらに、すでに収集しているデータの過不足の確認も行いました。各個人が提出する情報を一元的に抽出するツールの開発は進んでいますが、項目に不足がないか確認し、もし不足があれば機能追加を実施します。一律に集まったデータに対しては、簡単なグラフ作成を通じて作業記録などの分析を行っていく予定です。

「活用 × 利用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right