クリティカルシンキング入門

じっくり考えるMECE習慣

なぜじっくり考えるの? 無意識に考えやすいことをそのまま答えとしてしまう傾向に気付き、まずは意識的に立ち止まってじっくり考えることの大切さを実感しました。自分自身の思考パターンを見直す中で、視点を変える努力の必要性を改めて感じる機会となりました。 MECEの活用はどうする? また、MECE(モレなくダブりなく)の概念については、業務である程度使ってはいるものの、まだ十分に活用できていない部分があると感じました。そこで、隙間時間を利用して紙にさまざまなMECEのパターンを書き出すなどの方法で、頭の中でも自然にMECEの考え方が活用できるよう練習を続けたいと思います。 資料整理の秘訣は何? 加えて、MECEの活用は構成や話の流れを明確にし、プレゼンテーションや報告資料作成時に「段落ごとに重複がないか」「カバーできていないポイントがないか」を点検するのに非常に役立つと実感しました。こうした整理の方法を仕事に取り入れることで、より論理的な資料作成が可能になると期待しています。 問題解決はどう導く? さらに、ロジックツリーについても、自分の日々の課題にどのように活用できるか、またどんな種類の問題解決に特に効果があるのか、しっかりと考えていく必要性を感じました。自分自身の業務にどう落とし込むかを意識し、効率的な問題解決の手法として今後も活用していきたいと考えています。

クリティカルシンキング入門

データ分析で見つけた新たな視点と発見

データ加工の真実は? データの加工によって、見えてくる事実や印象は大きく変わるものです。「数字は嘘をつかないが、詐欺師は数字を使う」との言葉がありますが、まさにその意味を実感しました。情報は、どのように分解するかによって、判明する内容に差が出ます。ただし、最初から適切な区分けを定義することは難しく、仮説に基づいた検討になりがちです。そのため、区分けをできるだけ小さな単位で行い、グラフ化や計算によって傾向を見出すという方法が現実的です。 異軸の関係は? 一つの軸で明らかになった事実を他の軸と結びつける際には、それらの軸がどのような関係にあるのかを考慮する必要があります。全く異なる軸同士の場合、それらを組み合わせて四象限にするなどの工夫が求められます。 ログ分析で何が? 私は現在、自社サービスの顧客の利用状況をログで分析し、利用状況に問題がないか確認する工程に取り組んでいます。その結果に基づき、さらにARPU向上を提案しています。このデータ分析には、今回学んだ分解する観点を活用したいと考えています。 新データの可能性は? 先週、新しい利用状況データを取得できたため、来週にその分析を実施する予定です。この新しいデータは、これまでのものよりも詳細で、分析する軸が多岐にわたります。今回学んだ、複数の軸の関連性を考慮した事実抽出の手法が、大いに参考になりそうです。

クリティカルシンキング入門

エクセルで広がる!学びの新発見

エクセルとグラフの効果は? エクセルシートの活用方法について学んだことは、非常に奥が深く、多くの発見がありました。特に、データの見える化をグラフで実現することは非常に参考になりました。また、データ分析で迷ったときには、まずはデータを分解してみることが重要であるという点も、教材を通じて反省しました。後半のMECEに関する学びでは、経営戦略のツールとしての利用に関して、どのステップで役立つのか、構成要素を分解して考える視点が大変有益でした。 分析視点の工夫は? これらの学びを基に、大学の在学生や入学生の分析に活用してみたいと考えています。特に、入試ごとの分析視点が不十分であったため、同僚とともにいくつかの切り口を考え、層別や変数の分解を試みるつもりです。また、プロセスを分解し、ペルソナを設定することで、大学進学を考えた段階から最終的な進路決定に至るまでの過程の分析を試みたいです。 広報と全体の関係は? さらに、「全体を定義する」ということの重要性についても意識が深まりました。これまでは、学生がオープンキャンパスに参加し、その後出願するという単純な流れを考えていましたが、実際には学生が興味を持ち始めるタイミングで、どのように大学の認知度や魅力を伝えるかが重要だと感じました。そのため、進学先を決定するプロセスにおける効果的な広報活動の必要性を強く感じています。

戦略思考入門

現場で発見!経済の秘密

規模と習熟は何が違う? 事業経済性として、規模の経済性、習熟効果、範囲の経済性、ネットワークの経済性の4点を学びました。まず、規模の経済性は、事業規模が大きくなることで、1製品あたりのコストが低減される点に着目します。次に、習熟効果では、長期間の経験蓄積によって無駄が省かれ、プロセスの効率化や歩留まりの向上が進むことで、単位あたりのコストが下がる仕組みを理解しました。また、すでに保有する資源を他の事業に活用することで全体のコスト削減につながる範囲の経済性や、利用者が増えることで各利用者にとっての利便性が向上し、顧客獲得やサービス提供のコストが低減されるネットワークの経済性も学びました。 現場の数字はどう見る? サプリメント業界は食品業界の中でも比較的利益率が高いにもかかわらず、原材料費の高騰が続く中で、事業経済性への注目が重要だと感じました。特に、製造現場における規模の経済性と習熟効果が大きな影響を与えていると実感しています。毎年の予算編成で、営業やマーケティングに対する大きな予算が取り上げられる一方で、生産現場の数字はあまり議論に上がらない現状についても興味を持ちました。製造現場の経済性を正しく理解することにより、どの程度の予算を製品のマーケティング活動に充てるか検討できるため、ビジネス全体の流れを把握する視点を今後もさらに深めていきたいと考えています。

クリティカルシンキング入門

数字の裏に隠れる小さな真実

数値分解の意義は? 数値を細かく分解・加工することで、見落としがちな示唆を得る可能性があります。また、数値はグラフ化することで、より分かりやすく伝えることができます。分析の際は、「誰が」「いつ」「どのように」という多角的な切り口を用意しておくと効果的です。 分解作業の狙いは? 今回のワークは、与えられた数値をどのように分解するかに焦点を当てました。アンケートの設計・配信・分析といったタスクにおいては、どの切り口でどのような分析を進めるか全体像を押さえつつ、選択肢を適切に分解しておかなければ、いくらデータを集めても活用できないリスクがあります。 仮説検証はどう? また、新しい発見がなくても、今回の分解作業で得られなかった知見を学びとして前向きに捉えることが大切です。単にアンケートを配信するのではなく、小さな仮説検証を重ねることで、より精度の高い内容にブラッシュアップしていくことが求められます。 生成AIの使い方は? まず、全体像を明確に定義した上で、生成AIを活用しながらアイデアを整理します。その後、専門知識を有する関係者と確認を行い、情報が重複せず整理されているかをレビューしていきます。 基本属性の整備は? さらに、顧客の基本属性については、共通の型として整備し、自分だけでなく部署全体で再利用できるように準備を進めています。

データ・アナリティクス入門

データ分析で見えた本当の価値とは

データ分析の目的を明確に データ分析は、目的を持たずに取り扱うと、ただの意味のない数字でしかありません。そのことを今回の学習で目の当たりにすることができました。データ分析を行うにあたっても、なぜその分析をするのかという背景が見えなければ、同じ数字でも全く違った見え方をしてしまいます。そこで重要なのは、何を目的として分析を行うのかを明確にすることです。目的意識を持ち、定量的にデータを取り扱うことの重要性を学びました。 データで組織をどう活性化? 施策推進について考えると、個々の受付完了指標から組織や部単位での比較まで、データの切り口は多岐にわたります。組織が正常に稼働しているか、個人については「自分は頑張れているか」を評価することができます。さらには、何をもっと伸ばし、何を改善すべきか、メンバーのモチベーションの維持・向上のためにデータを利用したいと考えています。 データの伝達手段は? データを出すタイミングについては、デイリーにするか毎月末にするかなど様々な選択肢があります。組織やプロジェクトチームが活性化するための指標として、データを積極的に活用していきたいと考えています。データの伝達手段もまた多様で、メールや対面、ミーティングなどがあります。伝えたい内容、そのボリュームや重要度に応じて手段を使い分け、効果的に展開していきたいと思います。

データ・アナリティクス入門

ロジックで変える!問題解決のヒント

要素を分解する理由は? 要素を細かく分解して考えることの重要性を実感しています。ロジックツリーやMECEを用いることで問題解決に導く考え方は知っていましたが、実際の業務で活用する機会はほとんどありませんでした。しかし、例えば売上不足の原因分析において、感覚的な判断のみで進めると、実は客単価に問題があるにもかかわらず、売上数の伸び悩みにだけ着目してしまい、重要な視点を見落とす可能性があることを改めて認識しました。 良い切り口はどこに? また、悪い面ばかりに目が行きがちですが、良い切り口も取り入れることで全体の傾向が見え、適切な対策を講じやすくなると感じます。たとえば、自社で提供しているクラウドサービスの解約要因やアップセルの要因を分析する際は、業界、契約ユーザー数、利用部門、契約年数、ログイン回数などを軸に、理想と実際のギャップをMECEの視点で整理することが有用だと思います。 問題の整理はどうする? 今後、業務上で何かを分析する必要が生じた際には、まず直面している状況を具体的に整理し、問題(What)を明確に定めることが大切だと感じています。その上で、問題がどこにあるのか(Where)、原因は何か(Why)、そして解決策はどうあるべきか(How)をロジックツリーを用いて整理することで、問題解決の思考を習慣化していきたいと考えています。

データ・アナリティクス入門

ファネル分析で顧客行動を最適化する方法

ファネル分析の重要性とは? マーケティング分野での業務経験があるため、比較的知っていることが多かったですが、ファネル分析において顧客の行動プロセスを適切に設定する必要性を改めて認識しました。また、プロセス×ウォーターフォールチャートはあまり使っていなかったので、今後活用してみたいと思います。 ABテストの基本と注意点は? 以下、授業メモです。 ◆ABテスト - ABテストは1要素ずつ行います。複数の要素をテストしたい場合は、別の手法を検討する必要があります。 ◆ファネル分析 - ユーザーの利用段階ごとに、どの段階でユーザーが離脱しているのかを可視化します。 - プロセス×ウオーターフォールチャートを適切に活用します。 - 顧客の行動プロセスを適切に設定することが重要です。 GA4での課題解決にどう取り組む? GA4でのファネル分析を新たに作成する際には、顧客の行動プロセスを意識します。また、プロセス×ウオーターフォールチャートを適切に活用し、ABテストもページスピードが低下するリスクを考慮しつつ活用を検討します。 ちょうど製品サイトのリニューアルを進めており、GA4の設定も見直す予定です。顧客の行動プロセスを意識したファネル分析を行い、原因探索が適切に行えるようにします。また、見出した原因に基づく改善にはABテストを活用します。

データ・アナリティクス入門

複数仮説で切り開く学びの道

仮説はどう組み立てる? 仮説を考える際、3Cや4Pなどのフレームワークを活用することで、複数の仮説を網羅的に立てる手法に改めて気づかされました。これまでマーケティングのツールとしてしか意識していなかった考え方も、整理のための有効な手段となることを実感しました。 日常業務で仮説考察は? また、日々の業務の中で仮説を考え続けることにより、自分自身の業務への向き合い方を変えていきたいと考えています。 新サービスの評価はどう? 新サービスの提供時には、仮説を一つだけ立てた結果、分析や報告の内容が浅くなってしまい、納得感に欠ける部分があったと感じました。頭の中にはもっと考慮すべき点があったにもかかわらず、十分に明文化できなかったため、結果として不十分なものになってしまいました。 再挑戦の決意は? この現状を踏まえて、改めて複数の仮説を考え直し、分析と報告を再度やり直す方向で進めていこうと考えています。 案件分析の進め方は? 現在、2件の案件で分析が必要とされています。1件目は、半年前に提供したサービスの展開状況と今後の展開について、2件目は1年前に想定したサービス利用状況を再度確認する業務です。各案件とも、現状のデータを収集し、フレームワークを用いて仮説を立て、過去の想定と現状との違いを明確にする形で分析を実施する予定です。

戦略思考入門

未来予測にAIを活かすビジネスフレームワーク活用法

フレームワークの総合的活用法は? フレームワークを用いることで、自分や関係者だけの限られた情報に縛られず、ビジネスにおいて必要な要素を総合的に考えることが求められます。手に入れられるデータは現時点のものに限られ、未来のデータは推測に依存せざるを得ません。しかし、重要なのは未来に基づいた施策であり、この未来に対する包括的な検討方法をどうするかが鍵となるでしょう。 AIはどこまで活用できる? 一般的なビジネスフレームワークは理解しやすく、人間同士の議論には適しているものの、過度に単純化されている部分もあります。現代ではAIの存在があるため、現時点での事実は人間が収集し、チェック、設定する必要がありますが、未来への影響、特に複雑な交互作用の部分はAIにシミュレーションを任せるといった取り組みが求められるでしょう。 AIを用いた未来予測の具体策は? 使い慣れたビジネスフレームワークに基づいてAIに未来を予測させるためのテンプレートを、DifyやExcelで考案しています。すでに「ゴールデンサークル」や「バリュープロポジション」、「ビジネスモデルキャンバス」、そして「機械学習プロジェクトキャンバス」の素案を作るためのテンプレートが存在しています。これらを活用し、交互作用をも含む未来の予測にAIを利用できないか、o1に相談してみます。

データ・アナリティクス入門

実践力が輝く!学びの現場改革

3Cの分析方法は? 3Cは、事業環境を多面的に捉えるためのフレームワークです。Customer(市場・顧客)、Competitor(競合)、Company(自社)の3つの視点から状況を分析し、事業戦略を立案する際の参考にします。 4Pで何を判断? 一方、4Pは3Cの自社部分をより詳細に検討するためのツールとなります。Product(製品)、Price(価格)、Place(場所)、Promotion(プロモーション)の4つの要素を軸に、どのようにサービスの良さを顧客に訴求するかを分析するために活用されます。 現場の課題は? 観光客にとっては、免税手続きの所要時間が短い中で対面式のアンケートや、時間を要するインタビューは取り組みにくい方法と言えるでしょう。また、クレームが発生した際には、最低でも1名の通訳が苦情対応のため常駐しなければならず、現場では実質的に人員が減る状況となります。 改善策はどうする? これまでのアンケート調査は一度のみ実施しており、対面で紙に選択肢を記入していただく方法にはお客様に抵抗があると感じました。今後はデジタル形式で「後ほど実施していただいても構いません」と伝え、アンケートに協力していただいた方々には次回利用可能なショッピングクーポンを提供することで、対応の改善を図ろうと考えています。

デザイン思考入門

大局と小さな一歩が未来を創る

デザイン思考は何が目的? デザイン思考とは、目標達成のための有効なツールの一つです。どのようなツールが存在し、どのように活用できるかを並べながら、目標に向かう具体的な手順やステップを考え、実行していくプロセスです。 課題発見はどう行う? まず、問題がどこに存在するのかを見える化し、自分の思い描くものではなく、相手が求める価値をしっかりとデザインし、提案することが大切です。問題から生み出されるニーズにフォーカスすることで、デザイン思考を用いて到達点の明確化と、その実現に向けた小さなステップを計画することが可能となります。 全体像は見えてる? また、目の前の小さなステップや個人のやりたいことに固執せず、全体像を俯瞰した視点で取り組む姿勢が求められます。大局を見失わず、一歩一歩着実に進んでいくことが、目標達成への近道となります。 ニーズ調査の意義は? さらに、丁寧なニーズ調査を行うことで、利用者や市民の実際のニーズを具体的に把握し、そのニーズに合った到達点を思い描くことができます。 協働モデルはどう? たとえば、関係者と共に新たな地域交通モデルの構築に取り組む場合、まずは関係する各方面の現状やニーズを共有し、どの方向を目指すべきか、全員でモデル像を具体的に描いていくことが重要となります。

「活用 × 利用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right