クリティカルシンキング入門

データ分析の一手間で見える世界

データをどう加工すべきか? 与えられたデータをどのように加工すればよいか、その考え方を学ぶことができました。大切なポイントは以下の3つです: 1. 与えられた表をそのまま見るのではなく、まず加工を考える。 2. 絶対値ではなく相対値でもデータを見る。 3. 一手間加えてグラフ化し、視覚的にわかりやすくする。 データ分析の仮説立て方とは? これらを実行する上で重要なのは、仮説を立ててデータを分解することです。特に、MECE(漏れなくダブりなく)な分解を習得することが求められます。 可視化で何を達成できる? 私は、売上や営業スタッフ一人ひとりの実績やシェアを見ることが多く、その際にフィードバックを行う機会があります。ただ結果を振り返るだけでなく、もう一歩踏み込んだフィードバックができるように、データを可視化したいと考えています。可視化する際には、様々な切り口でデータを分解し、仮説を立てて分析します。もし仮説が結果に結びつかなくても、トライ&エラーを繰り返して原因を追求します。 今後の目標は? 今後の目標は以下の通りです: - 毎月の数字の振り返りの際に、特定エリアの商圏分析と購買年齢層を比較し、問題の明確化と特定を行い、さらに原因追求のプロセスを明確化する習慣をつける。 - 営業スタッフへの数字振り返り資料を、次回の会議時にはグラフ等を用いて改訂してみる。 - 月間の実績確認において、各カテゴリーごとにチェックするだけでなく、その都度気になる切り口でMECE分解を行う。

データ・アナリティクス入門

数字とグラフで解くデータの真実

数値分析のコツは? データ分析を行う際、基本的には「数字で見る」、「グラフなどを用いて目で見る」、「数式で検証する」の三つの方法が考えられます。まず、数字で見る方法では、代表値を使って分析を進めますが、単純平均だけではデータのばらつきを十分に捉えられないため、加重平均や幾何平均、中央値、標準偏差なども併用する必要があると感じました。 視覚的解析はどう? 次に、グラフなどを使って視覚的にデータを確認する手法については、棒グラフや分布図などを活用し、データのばらつきや傾向を直感的に把握できる点が有効だと思います。数字での比較に加え、視覚的に情報を整理することで、人間の「感覚」を補助的な指標として利用することが可能となります。 財務分析を見極め? 特に財務分析などでは、年度ごとの数値を並べて差異を示す資料に留まることが多いですが、グラフを併用することで推移が一目で分かり、結論の共有も容易になります。しかし、誤った手法を用いると分析結果自体が誤解を招く危険性もあるため、注意が必要だと実感しました。 今後の改善点は? 今回の学習を通して、様々なアプローチでの分析の重要性や、人間の感覚も一つの有用な指標となり得ることを再確認しました。もし分析結果に疑義が生じた場合は、他の指標を用いて再度分析を試みるなど、工夫が求められると感じています。また、実際の業務においては標準偏差などがあまり用いられない現状もあり、各自の業務でどのような指標を適用するか、今後の課題として考えたいと思います。

データ・アナリティクス入門

数字が語る学びの物語

データ全体像は? データ比較や数値化、数字に集約して捉える方法、さらには視覚的および数式を通じて関連性を把握する手法について学び、大変参考になりました。これにより、データの全体像を把握しやすくなると感じています。 平均の違いは? 目的に応じて、単純平均だけでなく、加重平均、幾何平均、そしてはずれ値に対応する中央値など、さまざまな平均値の使い分けが有用であると再認識しました。数字を分析する際、データの中心値と散らばりを考えるアプローチは非常に重要です。 標準偏差はどう? 特に、これまであまり意識してこなかったデータのばらつき、すなわち標準偏差の理解については、自己学習が必要だと思いました。今回の学習を通して、データ分析においてばらつきの考慮が結果に与える影響の大きさに気付きました。 実践はどう進む? 今後は、学んだ知識を生かし、エクセルを活用してグラフ化するなど、実践的なアプローチに取り組んでいきます。また、どのデータを分析するかはまだ模索中ですが、さまざまな場面で応用できるよう、引き続き自己研鑽を積んでいく予定です。 難解概念の壁は? 一方で、「平方根」、「標準偏差」、および「正規分布と2SD」といった概念は難解に感じたため、これらの理解を深めるためにさらなる学習が必要だと感じました。また、過去に業務で使った経験がある「幾何平均」についても、当時はあまり考えずに対応していたため、Raw dataを見直しながら基礎から再確認していきたいと考えています。

戦略思考入門

時間を操り効率を最大化する方法

どこに集中すべき? リソースには限りがあるため、どこに集中し、どこにエネルギーを注ぐのかを選択する必要があります。そのための選択ポイントとして、まずは明確なゴールを設定しましょう。これにより、何を選び、何を捨てるべきかの指針が得られます。次に、数値的根拠を示すことで、判断を主観や経験則に頼らず、客観的に評価することができます。加えて、成果を定量的に測定することで、継続的な取捨選択が可能になります。最後に、ゴールと数値的根拠に基づき優先順位を明確にすることが重要です。この「選択と集中」によって、限られたリソースを最大限に活用できるのです。 自動化はどう進化? 選択の結果が正解かどうかは未来にしか分かりませんが、「自分なりの判断基準を持って選択すること」が大切です。本来、「時間」と「品質」はトレードオフの関係にあると言われますが、バックオフィス業務の自動化はこれを克服する可能性を秘めています。自動化により、業務の効率化による時間短縮、人的エラーの軽減での高品質化、さらには成果物の品質の均一化が可能になります。 業務整理で変化は? 優先順位の高いものにリソースを集中させるためには、まずは現在の業務を圧縮する必要があります。これにより、業務の増加に対応するためにも、業務整理を行い、何を優先すべきかを再確認することが重要です。時間というリソースを有効活用するためにも、生成AIや自動化ツールに関する知識を深め、その活用を通じて、重要な業務に集中できる環境を整えたいと考えています。

クリティカルシンキング入門

データ分析で見える新たな可能性

データ分解の視点とは? 事象をより深く理解するためには、分解が重要です。分解の際は、Who、When、Howなどの視点から試行錯誤が必要です。一つの切り口に固執せず、様々な切り口から数字を確認することが求められます。このとき、切り口は「もれなくダブりなく」を意識しながら進めましょう。 直感に頼らずデータ確認 切り口が見つかったら、それに基づいてデータを直感的に分析します。しかし、直感的な推測は一度疑い、データで確認することが大切です。結果が期待外れであっても、それは失敗ではなく、次のステップへの前進です。 新しい視点で見る方法は? ウェブデータの分析でも、新しい切り口での分析が効果的です。切り口は自動的に決めるのではなく、MECEを意識して分解していきます。ある切り口が有効であっても、他にないかを考え、複数の切り口でデータを分析します。 チームで進める業務の確認 業務においても同様に、チーム全体での作業がもれなくダブりなく行われているか確認します。また、責任範囲を異なる切り口で考えてみると良いです。 マンスリーレポートにどう反映? ウェブデータの分析に関しては、全体を定義した上で新しい切り口をMECEを意識して今週から来週の間に実施し、その結果をマンスリーレポートに反映します。この過程では、全体を把握した上でチームメンバーと議論し、より良い切り口を探してみましょう。 なお、チームの業務に関しては、まずは思考実験を行うことから始めてみてください。

アカウンティング入門

数字で学ぶ!本気の経営戦略

利益と費用の違いは? カフェのケーススタディを通して、費用がP/Lのどの科目に該当するかや、売上総利益、営業利益、経常利益、税前当期純利益、当期純利益といった5つの利益の違いが明確になりました。 事業準備はどう進む? 事業を始める際は、まずどのようなコンセプトで展開するか、ターゲットとなる顧客を明確にすることが大切です。その上で、どんな準備を行い、どの程度の費用をかけるかというストーリーをしっかり作り込むことが、利益を生み出し事業継続に寄与するという視点を得ました。 価値本質はどう捉える? また、事業の価値の本質を見失わず、同業他社との比較を通じて自分の事業を客観的に把握することの重要性も感じました。これにより、コスト削減などの具体的な改善策を検討する必要性が理解できました。 施設比較はどんな結果? 今後のアプローチとしては、まず複数の施設がある場合、各施設のP/Lを並べて比較し、施設ごとの特徴を把握する方法を取ります。全体的な課題と各施設ごとの課題を抽出し、それぞれに対応するコスト削減案を策定することで、利益改善を目指していきたいと考えています。 どの課題に注目? 具体的には、先月の月次P/Lを確認し、赤字部門の課題を洗い出して対応策を講じるとともに、前年度同月との比較を行い、黒字部門でも利益が低下している理由を分析して改善策を考えました。これらの検討結果を基に、収支改善に向けた次月の行動計画を作成し、メンバーと共有の上、実際に動いていく所存です。

データ・アナリティクス入門

「データ分析でつかんだ達成感」

問題解決のアプローチは? 問題に対応する際には、まず何を明らかにしたいのかをしっかりと理解することが重要です。結論のイメージを持ちながら取り組むことで、ストーリーが明確になります。 データ分析の重要な視点とは? データを分析する際には、実数と比率の両方を確認しましょう。これは、母数の違いによって見え方が大きく変わるためです。また、効果的なグラフを用いることで、分析結果を直感的に理解しやすくすることができます。事象に応じて最適なグラフの表現方法を選びましょう。 考えを整理するコツは? 課題に取り掛かる際には、問題点を整理しましょう。考えたことや思い浮かんだことをメモし、それをグループ化して整理します。必要に応じて一旦立ち止まり、考えを再度整理することも大切です。優先順位を決め、効率的に進めていきましょう。 Copilotを活用する方法とは? また、Copilotと相談しながら思考を整理するのも有効です。特に難しい問題に直面した際には、飛躍した考えやアイデアを得る手助けになります。 クリティカルシンキングをどう磨く? 比較資料についても、実践を重ねながらベストな可視化方法を見つけていくことが求められます。クリティカルシンキングを意識し、しっかりと身につけることが成功への鍵となります。 AIを使って新しい視点を得るには? AIを活用することも一つの手段です。AIで壁打ちをすることで新しい視点を得たり、考えの整理が進んだりするでしょう。

データ・アナリティクス入門

データで綴る学びの軌跡

プロセスはどう進む? 分析を進める上で、プロセス・視点・アプローチの3つの要素が大変重要であると感じました。プロセスでは、まず目的を明確にし、次に仮説を立て、データ収集を行い、最後に検証を実施します。 視点でどう捉える? 視点に関しては、結果への影響度(インパクト)、特徴の理解(ギャップ)、一貫した変化(トレンド)、データの分布(ばらつき)、および法則性(パターン)など、複数の切り口でデータを捉えることが大切だと思います。 数式で理解できる? また、グラフや数字、数式を使って分析すると、視覚的にも理解しやすくなります。具体的には、単純平均、加重平均、幾何平均、中央値、標準偏差といった数式を用います。特に標準偏差は数値が大きければばらつきが大きいことを示し、小さい場合はデータが密集していることを意味します。 販売データはどう見る? 販売データを扱う際には、まず代表値と分布から傾向を掴むことが重要だと痛感しました。大量のデータがある場合、グラフを活用してばらつきを確認することにより、より精度の高い分析が可能になると考えています。また、平均値と中央値を比較することで、全体の状況を把握しやすくなるとも感じました。 業務でどう活かす? 実際の業務では、単純平均、加重平均、幾何平均、中央値、標準偏差など、どの指標を使用するのが最適かは、経験と慣れに依存する部分があります。今後も多くのデータ分析に取り組むことで、自分自身のスキルとして確立していきたいと思います。

マーケティング入門

顧客の声を活かしたリブランディングの秘訣

顧客の声はどう活用する? 顧客が自社商品をどう見ているのか、そして自社のアピールが過剰になっていないか、立ち止まって考えることが重要だと学びました。そのためには、アンケートなどを通じて顧客の声を集め、適切なPRやネーミングを確立することが必要です。特にある食品会社が製品のネーミングをリブランディングしたケースは、顧客の意見をうまく反映した好例です。 競合に惑わされない方法は? しかし、初めは顧客に目を向けていても、ついつい競合他社を意識したPRになりがちです。このような罠に陥らないためにも、自社商品の特性を理解し、顧客や取引先が自社製品をどのように捉えているかを確認することが大切です。もし、自社が伝えたい魅力と顧客の認識にズレがある場合は、それを真摯に受け止め、分析することが求められます。他の成功事例に学び、顧客の声を迅速に反映するよう、関係各所と連携していくことが重要です。 マーケティング思考を鍛えるには? このような取り組みを行うために、まずは自身のマーケティング的視点と思考力を鍛えることが求められます。例えば、ネットショッピングやスーパーでの買い物の際に、売れていない商品の印象とキャッチコピーの違いを考えることがトレーニングになるでしょう。 顧客の印象をどう改善する? その上で、自社商品のアンケート結果から顧客のネガティブな印象を拾い上げ、その差を埋めていく努力を行います。このようにして、顧客から見て魅力的な製品にしていくことが目標です。

データ・アナリティクス入門

分析で開く意思決定の未来

仮説検証の視覚化は? ライブ授業では、これまで学んできた課題の特定方法や仮説の設定、結果の検証といったプロセスを再確認することができました。特に、仮説検証の成果をどのように可視化するかについては、参加者の意見を聞く中で、棒グラフや円グラフ以外にも表現方法が存在することを知り、新たな視点を得ることができました。また、限られた分析時間の中で、本当に必要な分析を見極めることの重要性を改めて実感しました。データが手元にあると分析したくなりますが、何のために分析するのか、得られた結果をどう活用するのかを常に念頭に置いて進めるべきだと感じました。 分析目的と改善は? 講座を受講する前にデータ分析を学ぶ目的は「意思決定に活用するため」であり、その目的は6週間の学びを経ても変わっていません。授業内ではマーケティングに関する事例も取り上げられましたが、現業務において活かす機会は少ないと感じます。一方で、A/Bテストや4P分析は業務改善のための改善案策定に、また相関分析は将来の経費推計に役立つと考えています。 何かを決定する際は、まずデータ分析で解決可能かどうかを検討しています。その際、何のために分析を行うのか、何を明確にするのかを設定し、ただ単にエクセルでグラフを作成するのではなく、その手法が最適かどうかを熟慮することを習慣にしています。また、年1回の定例報告の場合、長年変わっていない報告形式も多いですが、可能な範囲でより伝わりやすい形式に改善していくことが重要だと感じています。

リーダーシップ・キャリアビジョン入門

振り返りで見える信頼と成長

信頼して任せていますか? 実行段階では、メンバーに任せる際に過干渉にならないよう気をつける必要があります。進捗状況の確認や細かいフォローに気を取られず、信頼し任せること、またメンバーが頼りにしやすい雰囲気づくりを心がけることが大切です。 予期せぬ事態はどう対処? 予期しない事態が発生した場合は、まず事態を収めた上で、今後に向けた改善策を検討します。その際、リーダー自身の見落としについては率直に認め、個人を追及するのではなく、組織全体の構造的な問題に目を向けることが求められます。 フィードバックの意味は? フィードバックについては、良い点と改善すべき点の両面を伝えることが基本です。特に改善点は曖昧になりがちなため、具体的な指摘をすることを心がけたいと思います。 振り返りのポイントは? また、実行した結果をしっかりと振り返る責任があります。振り返りの際は、まず出来事や状況を客観的に見つめ、次に自分自身の考えや行動を問うようにします。その上で、得られた気づきや教訓を次に活かすための具体策を導き出すことが重要です。 モチベーションは高まる? メンバーのモチベーション向上には、「尊重する」「目標設定をする」「フィードバックを行う」「信頼性を高める」といったポイントが効果的です。実際、私は「感謝や称賛をしてもらったとき」にモチベーションが上がると感じています。みなさんはどのように感じるか、ぜひ意見を聞かせていただければと思います。

クリティカルシンキング入門

「データ分析の真髄を学ぶ:見逃さないコツ」

グラフを使う重要性とは? 数字データを扱う際には、以下の点に着目すべきと感じました。 まず最初に、グラフを使う選択肢を常に考えることが重要です。さらに、見えている数字だけで判断してはならないという点も大切です。また、一般的なデータの切り方が必ずしも正しいとは限らないことにも注意が必要です。 データ分解で深掘りする方法 データの分解では、当初出た傾向とは異なる結果が見える場合があるので、さらに深く分解することが求められます。その際、MECEを意識し、特にモレがないようにすることが重要だと思います。また、層別、変数、プロセスを使い分けることも必要です。 運用設計で注意すべき点 運用設計を行う際には、利害関係者がMECEでモレがないかを確認することが必要です。新規事業のフロー構築において、全体をプロセスで分解し、必要なツールを作成していますが、再度プロセスを確認し、より正確なものに仕上げていくことも大事です。 サマリーデータはどう見せる? クライアント提出用のサマリーデータに関しては、見せ方を工夫し、ニーズに応えた数字を提出することが求められます。そして、時間的なロスが生まれるかもしれませんが、一度作成したものを一日寝かせてから再度検証することを意図的に実施するべきです。 急ぎの案件での分析 急ぎの案件では、得たい数字が出た時点で分析を完結してしまうケースがあるため、これ以上分解できないかにこだわって現状把握を進めることが重要だと考えます。
AIコーチング導線バナー

「確認 × 結果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right