データ・アナリティクス入門

誰もが知る役立つ顧客データ分析の秘訣

分析目的の共有は済んでいる? 分析においては、まず目的をステークホルダーと共有し、判断の基準となる適切な比較対象を設定することが重要です。その後、グラフを用いて直感的に分析結果を把握できるように表現することが求められます。さらに、データが名義尺度、順序尺度、間隔尺度、比例尺度のいずれに該当するかを確認し、適切に扱う必要があります。 顧客データは適切か? 顧客情報の分析を依頼されることはよくあります。この際には、集計の目的をしっかりと理解し、対象となるデータが本当に適切であるかを確認してから分析を行うように心がけています。特に、分析結果が事前の予測から外れることがあります。その原因を探ると、対象外の顧客が対象データに含まれているという事例が多く存在します。 データグルーピングの確認 分析を行う際には、まず分析の目的と分析対象データの中身を事前に確認し、目的に対してデータの対象が適切であるかどうかを確認します。特に、データのグルーピングを行う際には、そのグルーピングが正しいかどうかを作業中でも確認することが重要です。提供されたデータには、抽出条件が不明確であったり、対象外のデータが混じっていたりすることが多いため、グルーピングの条件についてはステークホルダー間で共通認識を持つ必要があります。これを怠ると、分析をやり直すことになる可能性があります。

クリティカルシンキング入門

問いが導く学びの未来

イシューって何が大事? イシューを明確に設定することは非常に重要です。また、常に問いを残し、その問いを共有する姿勢が大切だと感じます。問いという形にすることで、問われた際に答えを出そうという意欲が湧き、余計なことを考える余地がなくなります。その結果、論理的な思考が促され、問題解決に繋がると考えています。加えて、知識は「インプット」から始まり、「知識の活用によるアウトプット」、さらに「他者からのフィードバック」や「振り返り」といったサイクルを継続することで身に付くと思いました。 どう計画に反映する? また、会社の方針を自部門の計画に反映させるとともに、その計画を分解して部下に展開する際にも、このアプローチは有効だと考えます。経営層の指針が正しく、かつ方向性を変えることなく伝わるためのツールとしても活用できるのではないかと思います。 計画の検証、どう進める? 計画立案にあたっては、まず必要な項目や要素を漏れなく、かつ重複なく洗い出すことが求められます。そして、思い込みを排除し、客観的な視点で検証することも重要です。さらに、計画の中でイシューを特定し、対応策が論理的であるか、また設定した枠組みから逸脱していないかを慎重に考える必要があります。最後に、各対応策の根拠を明確にし、その正当性を確認することが、計画の成功に向けた鍵となると感じました。

データ・アナリティクス入門

データに賭けた挑戦と発見

目標設定はどう? 「分析は比較なり」「何を明らかにしたいのか」という考えを軸に、データから得られる情報を見失わないため、まず明確な目標を設定しています。その目標に向かい、必要なデータやストーリーともいえる仮説を構築し、試行と検証を繰り返すことで、求める結果に近づけています。 データ表現はどう? また、取り扱うデータの種類に応じた加工方法やグラフの見せ方が重要であると感じています。そのため、状況に合わせて最適な表現方法を選ぶことに努め、いかなる場合も「とりあえず」での加工を避け、ビジネスにおける分析では、データに入る前に「目的」や「仮説」がしっかり整っていることを確認しています。 ランニング費用はどう? これまで部門費管理を想定していた中で、担当しているITツールのランニングコストについても、使用金額や実際の作業時間など、これまで取得してこなかった新たなデータ要素を活用していく計画です。これにより、必要なツールや今後の投資対象となるソフトウエアの分析に役立てようとしています。 データ収集の工夫はどう? さらに、データが不足している点を解消するため、まずは必要なデータの収集に力を入れると同時に、作業の効率化や一部自動化の導入も視野に入れています。今回の講座を通じて、時間の有限性を改めて認識し、これからはより計画的に活動していく所存です。

データ・アナリティクス入門

データで解き明かす!仮説立案の極意

仮説の種類と意義を知る 仮説とは、ある論点に対する仮の答えのことを指します。仮説には目的に応じて「結論の仮説」と「問題解決の仮説」がありますが、その中でも仮説は様々なフレームワークを用いて複数用意する必要があります。検証方法としては、データ収集が重要であり、目的対象を検討した上でアンケート調査や口頭調査を行うことが有効です。 打ち手を選ぶ際のフレームワーク活用法は? 業務に活用できる場面としては、打ち手の検討があります。問題解決のためにどの打ち手が効果的かを考える際には、フレームワークを用いてどこに効果があるかを検討することが求められます。ブレインストーミングから打ち手を選定する際にも、枠組みから検討し、その打ち手の効果測定や仮説作りのためのデータ収集が必要です。 フレームワークで複数視点を持つには? 複数の仮説を持ちながら物事を検討することは重要です。フレームワークを活用することで、様々な視点から会議に参加する準備が整います。そのためには、フレームワークの知識を習得し、何が論点になっているのかを正確に確認することが必要です。 データ検証の質を高める手法 データ検証の項目を洗い出す際には、目的が曖昧なままアンケート調査を行うのではなく、目的を明確に定め、それに沿った項目や枠組みを検討しながら実施することで、質の高い結果が得られます。

戦略思考入門

フレームワークで見える業務改善の秘訣

関係者間のゴール共有は必要か? ひとつの課題に対しても、関係者それぞれがスタートの時点でゴールやプロセスを共有しておくことによって、方向性を見失わずに戦略を立案できます。しかし、経験値が高い人や声が大きい人に引っ張られることはよくあります。そのため、フレームワークを使って課題や情報を分析し、優先順位や重要度を整理することが重要だと思いました。 業務でフレームワークは活用できてる? 現在の業務では、中期計画を策定する際にSWOT分析やPEST分析を使用していますが、実際に課題を十分に理解し洗い出せているか自信がありません。上司の出す結果をそのまま受け止める傾向があります。今回の学習で得た具体的な事例を参考に、業務に落とし込んでみたいです。特にカスタマーサービスにおいては、商品や営業に直接関与していないため、サービス業におけるフレームワークの効果的な活用法について考えていきたいです。 業界分析は計画にどう結びつく? 業界の分析や自社の強み・弱みを踏まえて、優先的に強化すべき領域や必要な対応を整理し、進めてみます。既存の計画についてもフレームワークを適用し、具体的な改善点を見つけ出し、現在の計画にどのように結びつくかを確認して、理解を深めていきたいと思います。また、本講座を通じて他の業界の視点を学び、自分の視野を広げたいと考えています。

データ・アナリティクス入門

複数仮説で切り開く学びの道

仮説はどう組み立てる? 仮説を考える際、3Cや4Pなどのフレームワークを活用することで、複数の仮説を網羅的に立てる手法に改めて気づかされました。これまでマーケティングのツールとしてしか意識していなかった考え方も、整理のための有効な手段となることを実感しました。 日常業務で仮説考察は? また、日々の業務の中で仮説を考え続けることにより、自分自身の業務への向き合い方を変えていきたいと考えています。 新サービスの評価はどう? 新サービスの提供時には、仮説を一つだけ立てた結果、分析や報告の内容が浅くなってしまい、納得感に欠ける部分があったと感じました。頭の中にはもっと考慮すべき点があったにもかかわらず、十分に明文化できなかったため、結果として不十分なものになってしまいました。 再挑戦の決意は? この現状を踏まえて、改めて複数の仮説を考え直し、分析と報告を再度やり直す方向で進めていこうと考えています。 案件分析の進め方は? 現在、2件の案件で分析が必要とされています。1件目は、半年前に提供したサービスの展開状況と今後の展開について、2件目は1年前に想定したサービス利用状況を再度確認する業務です。各案件とも、現状のデータを収集し、フレームワークを用いて仮説を立て、過去の想定と現状との違いを明確にする形で分析を実施する予定です。

クリティカルシンキング入門

伝えたい順で魅せるスライド術

伝える順序は大切? 学びの中で、まず伝える順序に着目することの重要性を再認識しました。スライド作成時に、まず何を伝えたいのか、またその根拠としてどのグラフやデータが必要かを意識することで、受け手にとって分かりやすい資料が作れると感じました。さらに、資料全体の色調、書体、イラストなど、視覚的な要素にも工夫を凝らすことで、相手にどう捉えてもらうかを考える機会になりました。 実務での活用はどう? また、学んだ内容は実際の業務にも直結しています。社内の戦略会議や中間報告、トラッキング結果の共有など、社内向けのプレゼン資料作成で活用できることが実感できました。顧客への説明資料においては、製品の伝えたいメッセージや、説得力のあるエビデンスの見せ方に役立っています。 資料見直しの効果は? さらに、カタログや各種資材の作成においては、我々が何を伝えたいのか、そのためにどの情報をどのように見せるかを工夫する上で、大変参考になりました。作成した資料は翌朝に再度見直すことで、伝えたい内容が改めて明確になり、スライド全体を俯瞰して強調すべきポイントやグラフの見やすさを確認する習慣が、資料の質をさらに向上させています。上司や同僚の意見を取り入れることや、資料作成後にロープレで流れや根拠を整然と説明できるか確認するプロセスも、非常に有益な学びとなりました。

リーダーシップ・キャリアビジョン入門

成長を感じた!プロジェクト成功の秘訣

仕事を任せるときのポイントは? 仕事を任せる際は、事前に計画を立て、相手との理解を共有することが重要です。任せた後は、過度に干渉せず、人の特性を見極めながら適度なアドバイスを行うように努めましょう。また、相談を受けたらその都度適切に回答し、誤りがあれば早い段階で軌道修正できるように計画的にフォローすることが効果的です。これにより、相手のモチベーションを上げることが可能となります。 振り返りをどう活用する? 仕事を実行した後の振り返りもまた重要です。プロジェクトを実施した後、学んだことを言語化し、まとめることで、これを今後に生かすことができます。このプロセスにより、自分の自己効力感を確認でき、次回のプロジェクトにより良いアウトプットを生み出す助けとなります。チームメンバーとも学びを共有し、他の人の意見を聞くことで独りよがりにならないようにしましょう。 モチベーションを高めるには? モチベーションに関しては、相手のこだわりポイントを尊重し、その成長を支援するようなアドバイスを心掛けることが大切です。相手の得意分野を見極め、それを引き上げることで、自己効力感を高めると共に、他のタスクにも良い影響を与えることができます。具体的な成果を評価し、結果を尊重する言葉をかけることで、彼らのやる気スイッチを押し、自発的な取り組みを促しましょう。

デザイン思考入門

試作とフィードバックで見つける新たな一歩

目的と設計はどう変わる? 自分の目的と相手の目的を整理しながら、自社のWebサイトの設計を見直す必要性を感じました。無形商材の場合、ユーザーに疑似体験させる工夫が重要で、サービスの流れや機能を紙やスライドで視覚化し、細かいフィードバックを受けることが効果的だと考えています。 試作で何を掴む? 試作(テスト)からフィードバックを迅速に得ることが大切です。また、どのようなフィードバックを求めるかという視点を事前に持つことも必要だと感じました。課題の定義や情報設計が漠然としていると、良い試作へとつながりにくいため、前提をしっかり作り込み、アイデアを十分に出し切ることが重要です。 小さな挑戦はどう効く? さらに、小さな試みを積み重ねることで、結果的に近道が見えてくると実感しています。正解へいち早く辿り着きたいという焦りが、かえってネックになることもあるため、スピード感と丁寧さの両面を大切にしていきたいと思います。 情報設計で成果を出す? 情報設計においては、自分の目的と相手の目的を再検討し、課題の定義と連動させる余地があると感じています。さまざまなプロトタイプが存在し、それぞれの簡易さや工程の多さに違いはあるものの、得られるフィードバックの質にも個性があり、細かな確認を積み重ねることで質の高い成果物を生み出すと確信しています。

クリティカルシンキング入門

伝わる!数字×図表のプレゼン術

ビジネスで何が伝わる? あらゆるビジネスシーンで、相手に情報を伝え、行動を促すためのノウハウを学びました。図による伝達と、文章での表現それぞれのポイントを体系的に理解できたことが大きな収穫です。 どう伝えれば効果的? 図を用いて情報を伝える際は、以前学んだ「数字に意味を持たせる」という考え方を意識します。図や表を作成する際には、何を目的に、どの情報を伝えたいのか、そしてその結果として相手にどう変化してほしいのかを想像することが重要だと感じました。また、スライド作成時には、体裁を丁寧に整える基本的なことの重要性を改めて確認しました。 職場で活かせる? 現職では、営業やマーケティングの数字を分析し報告する機会が多いため、今回学んだノウハウはあらゆるプレゼンテーションで活かせると確信しています。さらに、ビジネスライティングは、たとえ職を離れても生涯にわたって必要な能力であるため、日々実践を重ねていきたいと思います。 コミュニケーションの工夫は? 毎週の経営報告においては、作成したスライドで何を伝えたいのか、相手がどのような状態になってほしいのか、そして何を求めているのかを常に意識するように努めます。部下とのコミュニケーションにおいても、目的や手法、丁寧さを重視し、より伝わるコミュニケーションを実現していきたいと考えています。

クリティカルシンキング入門

データの切り口に迷ったら実践する方法

データ分析の切り口選びで何が見える? データの分け方によっては、見えてくる結果が異なることがあります。例えば、分解する切り口を誤ると、真の原因が発見できなくなることがあります。このとき、分解する切り口は「層別分解」「変数分解」「プロセス分解」の3つが有用です。これらの手法に慣れることが重要なので、自分で考えながら手を動かすことが大切です。 真の原因を探る鍵はどこに? 問題解決において真の原因を探る際には、データ分析を行いますが、その際には分解の切り口が誤っていないかどうかを確認する必要があります。また、お客様へのヒアリングの中でMECEおよび5W1Hを意識することで、真の原因や現状を把握する際に役立ちます。 問題解決にMECEはどう活用する? 問題の特定と分析において、問題を構成する要素を重複なく漏れなく分解することで全体像を把握しやすくなり、また問題の原因を特定する際に全ての可能性を考慮して整理することができます。業務プロセスの改善では、業務フローをMECEに分解することで効率化の余地を明確にします。データ分析とレポーティングでも、データをMECEに整理することで分析の精度を高め、クライアントにわかりやすく伝えることができます。加えて、プロジェクト管理ではプロジェクトのタスクをMECEに分解し、抜け漏れなく管理します。

データ・アナリティクス入門

分布も味方に!データ分析の学び

平均値と分布への疑問は? 代表値を用いた分析手法が有効であると実感しました。たとえば、平均値(単純平均)を用いることで全体像を把握できる一方、データがどの程度集約されているのか、またはばらついているのかを判断することは難しいため、平均値とデータ分布の両面から検証する重要性を学びました。 データ分布の検証は? データ分布を確認する手法としては、標準偏差が挙げられます。標準偏差の値と集計結果に大差がなければ、分析の正確性が高まると感じました。また、分析内容に応じて単純平均、加重平均、幾何平均、中央値など様々な代表値を使い分けることで、異なる角度からの洞察が可能になることに気づきました。 仮説検証の進め方は? さらに、データ分析は比較を前提としているため、問いやゴールを明確に定め、仮説の設定、データ収集、仮説検証というプロセスを徹底することが大切だと学びました。これを繰り返すことで、より精度の高い結論に到達できると実感しました。 実践例の応用は? また、実践例として、交通系ICカードの決済実績を分析する際には、切り口別に代表値や分布の状況を組み合わせる手法に取り組みたいと感じました。ヒストグラムなどを用いてビジュアル化することで、報告相手にわかりやすく情報を伝える工夫が、今後の分析の質向上につながると考えています。

「確認 × 結果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right