戦略思考入門

柔軟思考で読む経営の真髄

目標は何になる? まず、以下の3点を目標にする必要があります。第一に、物事の本質を捉え、目標達成に効果的な手段をシステマチックに考えること。次に、大局観を持ってバランスよく情報を収集・分析し、適切に考察すること。そして、フレームワークなどの型を習得することです。 どう分析する? 分析にあたっては、3C、SWOT、クロスSWOT、バリューチェーンなど、案件に応じた手法を選ぶと同時に、特定のフレームワークに固執しすぎない柔軟さも求められます。また、常に経営者の視点を持ち、ジレンマを恐れずに他社の意見に耳を傾ける姿勢が重要です。 どう機能を活かす? 製品開発においては、自分の担当機能に偏りがちな傾向を意識する必要があります。たとえば、機能テストではテスト内容に気を取られがちですが、本当に提供したい機能で何が求められているのかを見極めることが大切です。また、他機能との干渉が発生した場合、自己の機能を守るだけでなく、相手とのより良い落としどころを探ることが求められます。自分の機能のメリットを強調する際も、全体最適の視点で何が必要とされているのかを考えることが重要です。さらに、自グループの改善・発展のみに目を向けるのではなく、経営者の視点でそのグループに求められる役割を見定めること、そして、現状の取り組みに意義を見出せなくなったときには、チーム、会社、グループ、業界全体の視点で再評価することが求められます。 役割を再考すか? また、現在、関連企業に出向している中で、業務委託先という意識から自らの存在意義を否定的に捉えるメンバーが多い現状があります。そのため、会社単体で考えるのではなく、グループ全体や業界全体、さらには世界規模の視野で自分たちの役割がどのような影響を及ぼし、結果的に何を求められているのかについて、定期的にメンバーで話し合う機会を設けることが重要だと考えています。

データ・アナリティクス入門

分析で見つけた新たな発見と気づき

比較による効果測定とは? 分析とは、比較することである。まず、分析する項目を整理し、各要素の性質や構造をはっきりさせることが重要だ。何かの効果を測りたい場合、「ある」場合と「ない」場合で比較を行い、分析対象以外の条件も整える必要がある(これは「Apple to Apple」と呼ばれる)。 データ分析の目的と仮説 データ分析を行う際には、まず目的と仮説を立てる。例えば、データ分析の目的は何で、その結果どのような状態を目指すのかを明確にすること。そして、どの項目を分析すれば目的を果たせるのか、その項目をどのようにデータ加工すれば良いのかを考え、具体的な仮説を立てることが大切だ。 適切なデータ加工と表現法 データにはその種類に応じた加工法やグラフの見せ方が必要である。割合で表現するのが適切な場合と、実数(本来の値)で表現するのが適切な場合がある。また、質的データ(数値の大小に意味がないもの)と量的データ(数値に意味があるもの)の違いを見極める必要がある。 人事部門のデータ活用法 人事部門では、健康経営やエンゲージメントに関するデータを扱い、改善に向けた施策を企画することが多い。このため、データを活用して課題解決や目標達成のためのPDCAサイクルを効果的に回せるようにすることが求められる。これまでの施策参加者がどれだけ改善したか、「参加した人の中で●●をした人はより■■だった」といった分析を行うが、このためには、参加者と不参加者の間での比較を行うことが重要だと感じている。 目的設定と議論の重要性 まずは、目的を明確にし、自分自身の思い込みや仮説に偏らず、上司やメンバーと徹底的に議論することが必要だ。次に、課題に対して目指す姿を定量的にKPIとして設定し、現状を把握する。算出するデータに定義と根拠を持ち、それを分かりやすく伝えるスキルを身に付けることも重要である。

クリティカルシンキング入門

切り口で明かす学びの本質

データはどう見切る? データの切り方によって、同じ数字でも見える課題や傾向が大きく変わることを実感しました。目的を明確にして「何を見たいのか」を意識した切り分けを行うことで、漠然と眺めるだけでは気づけなかった本質が浮かび上がり、無駄を省いた的確な分析が可能になると感じています。 MECE活用は有効? また、MECEの考え方を取り入れて整理することで、重複や見落としを防ぎ、全体像を正確に把握できるようになりました。その結果、何が起こっているのか、どこに手を打つべきかを論理的に説明でき、相手にも納得してもらいやすくなると学びました。 支援でどう効果発現? たとえば、新規事業の構想支援では、顧客層、提供価値、チャネル、収益構造などの視点で情報を整理することで、情報の抜けや重複を防ぎ、相手の納得感を得て意思決定をスムーズにする効果を実感しました。 組織開発の整理法は? また、組織開発の現場では、ヒアリングした内容を「構造」「風土」「スキル」「制度」といった切り口で整理することにより、課題の全体像や優先順位が明確になり、具体的な施策立案につながっています。 研修・講演はどう整理? さらに、研修や講演の場面でも、参加者にとって複雑なテーマを目的に沿って段階的に分解して提示することで、理解と納得を引き出す効果がありました。オンラインでのクライアントとの対話やレビューの際にも、現在の視点や抜け漏れ、そして本質を可視化することで、共通理解と納得感のある議論が進められると感じています。 学びを今後どう活かす? 今回学んだ「切り口の工夫」や「MECEの視点」は、事業開発や組織開発の現場で、初期の仮説立てからヒアリング結果の整理まで非常に役立つと実感しています。今後はこれらの手法を意識的に活用し、ツールを組み合わせながら日常業務に継続的に取り入れていきたいと思います。

データ・アナリティクス入門

数字が照らす学びの道

どうやって特徴を捉える? 大量データを比較する方法として、まずデータの特徴をひとつの数字に集約し、グラフ化して視覚的に把握する手法を学びました。これにより、数値としての評価だけでなく、データの散らばりや傾向も同時に捉えることが可能になります。 平均値の違いを知る? 平均値や中央値を確認するために、単純平均、加重平均、幾何平均、そして中央値の各手法を比較しました。今まで単純平均や加重平均を主に用いていたため、このうち幾何平均と中央値の手順が分かっていなかったために、業務上物足りなさを感じていた点に気づくことができました。 分布の形はどう判断? また、データの平均的な分布をグラフ化することで、これまで感覚的に捉えていたデータの散らばりを、標準偏差などの具体的な数字として表現する必要性を認識しました。こうした数値化は、データのばらつきが大きいのか小さいのかを明確に捉える上で非常に有効です。 利用状況をどう見る? さらに、提供しているサービスの利用状況を単なる数の集計として週次報告している現状に対して、まだ活用できていないデータの中に、利用者の属性や利用時間帯などの詳細な情報が含まれているのではないかと考えるようになりました。これらを分析することで、サービスの改善点や利用者の利便性向上につながる提案が可能になると感じています。同様に、ライセンスやクラウドの予算についても、感覚的な予測に頼らずデータに基づいた数値をフィードバックすることで、より説得力のある結果に結びつくと考えています。 予測結果は合致? また、1年前に作成した将来のクラウド利用予測と現状を比較するタイミングを迎えたことから、その分析を活用し、利用していなかったデータも含めてさらに掘り下げていこうと考えています。あわせて、学習用の動画を見直すことで、自分自身の理解をより一層深める予定です。

クリティカルシンキング入門

数字の工夫で見つけた新発見の旅

数字活用のコツは? 数字を活用するためには、「加工の仕方」、「分け方の工夫」、「分解の留意点」を意識することが重要です。業務では数値を頻繁に使用しますが、「加工の仕方」には特に問題を感じていません。ただ、「分け方の工夫」に関しては、機械的に分けることが多かったことに気づきました。機械的に分ける場合と、柔軟に分けることで異なるグラフ結果が得られるという点は非常に新鮮でした。 上司へどう伝える? 上司へ説明する際には、数字がハイレベルで理解できることが重要です。そのため、今後は数字の分け方に注目し、客観的でわかりやすい資料作成に努めたいです。「分解の留意点」においては、MECEを活用し、全体をモレなくダブりなく定義し、分析することを心がけます。一度出した回答も再検証し、常に正しいかを確認することで、最短で正しい回答を導き出したいと思います。回答を出すとすぐに実践してしまう癖があるので、注意する必要があります。 プレゼンの工夫は? 「分け方の工夫」は、上司へのプレゼンテーションや報告にすぐに活用できます。具体的には、KPIやプロジェクト進捗において、達成に必要なものやすべきことを数値で分解し、機械的ではなく柔軟にグラフ化することで、視覚的にわかりやすく解決策を見つけやすくします。また、今週学んだ内容は業務全般に活用できるため、有意義でした。忘れないように反復して身につけたいです。 資料作成のポイントは? 現在準備しているKPIやプロジェクト進捗報告のプレゼン資料には、特に「MECE」、「分け方の工夫」、「分解の留意点」を取り入れたいです。重複する部分もありますが、MECEを用いて層別分解、変数分解、プロセス分解を試み、新たな発見をし、異なるグラフを用いることで説得力を高めたいと思います。回答の検証も行い、より効果的なプレゼンテーションにしたいと考えています。

データ・アナリティクス入門

条件を揃えて見える学びの真実

正しい比較はどうする? 「Apple to Apple」という考え方が印象に残っています。同じ条件に揃えて比較しなければ、意味がなく、データを正しく読み解くために非常に重要だと感じました。頭では理解していても、経験やクリティカルシンキングが不足していると、ついつい情報を鵜呑みにしてしまう危険性があります。 企画と集客の関係は? 私は学生向けのオンラインイベントの企画と集客を担当しています。まず、企画と集客は表裏一体であり、学生の行動分析が重要です。具体的には、どの時期にどのような申込行動があるのか、参加後にはどのような行動に繋がっているのかを解析し、その結果をもとに企画の対象、開催時期、内容を決定しています。 認知広げる秘策は? さらに、集客においては「いつ、何を、どのように」告知して認知を広げ、申込を促し、開催前に離脱を防ぐ対策まで考えなければなりません。状況が常に変化する中で、申込状況をリアルタイムに把握し、必要な打ち手の変更を迅速に行うことが求められます。企画の効果が集客に影響するため、両者は密接に連携させる必要があります。 データ整備は進んでる? 現状では、まずデータの整備が最優先事項です。折り返し地点まで進めていますが、依然として地道な作業が続いています。正直なところ、「会社が整えておくべきだ」という愚痴も出るほどですが、しっかりと整備を進めなければ本質的な分析はできません。今後も引き続き取り組んでいきます。 管理方法はどうなってる? また、データの記録や管理、分析を効果的に行うためには、エクセルフォーマットの整備も欠かせません。どのようにすれば見やすく、管理しやすく、分析しやすいかを、部署メンバーと意見を合わせながら調整を進めています。この作業は地道ですが、本質的なデータ分析の議論に繋がっているため、継続して進めていく覚悟です。

戦略思考入門

戦略思考で描く理想の未来

戦略思考はどう始める? 戦略思考とは、理想の自分や得たい結果、なりたい姿を実現するために、明確な目標を設定することです。そのためには、現在地である自分から、目標を達成した自分への道のりを描く必要があります。資源は有限であるため、時間や労力を無駄にしないよう、最速かつ最短で到達する方法を考えることが重要です。つまり、理想の自分を描き、現在の自分に必要なものと不要なものを取捨選択して行動に移すことが戦略思考といえます。 部署の目標はどう決める? 私が所属する部署はバックオフィスです。ここでの目標は新規業務の拡大と新規事業への参入です。業務や事業において目標が明確でないと、何を努力すべきかが分からず、行動に迷うことがあります。どの業務を拡大するのか、どんな事業に参入するのか、細かく決められていないときは、何が必要で不要かを判断しづらくなります。このため、目標を立てることは不可欠であり、それが意識付けや意思決定、そしてモチベーションを支える重要な柱となります。 議論はどう広がる? 個人や部署の目標を設定すると、建設的な議論が生まれ、必要な学習や資源の確保といった様々な思考が展開されます。その結果、チームとして目標に向かって進むための計画を立てることができます。 戦略習慣は何が鍵? 戦略的思考を習慣化し、体得するためには以下の行動を継続することが大切です。まず、仕事やプライベートなど何事もゴールを定める習慣を身につけること。そして、ゴールまでに必要なことや不要なことを分析する習慣を持つことです。分析の結果から最良の計画を立て、実行から得た学びを次回に活かすことも重要です。また、様々な経験を通じて自分の得意・不得意を見極め、独自性を育む自己啓発も必要です。これらを一人で行うのではなく、多様な情報源から得た情報を活用してブラッシュアップを続けることも大切です。

クリティカルシンキング入門

データ分析の新発見と発想転換の旅

データ分析の工夫は? 今週の講義では、多くの気づきがありました。まず、データ分析においては、単にデータを眺めるだけでなく、少し手を加えることが重要だということです。具体的には、販売戸数と単価の組み合わせで売上を構成する新しい項目を作成したり、数字を視覚化するためにグラフを使ったりすることです。これまでの自分には、そうした手間をかける習慣がなかったことに気づかされました。 分割方法はどうかな? データの分割方法についても新たな視点を得ました。従来は年齢別に10歳ごとで分けていましたが、大学生に焦点を当てた18歳~22歳の分割や、4歳ごとの分割法を知り、新鮮な驚きがありました。こうした視点の転換は、日常業務にも活かせると感じました。 分解の効果は? 博物館での演習を通じて、分解を重ねることで新たな洞察が得られることがわかりました。ただ満足するだけでなく、さらなる分解が重要だと認識しました。講師からも、迷ったらとにかく分けてみること、特徴的な結果が出なければそれは次のステップだという考え方を学び、大変共感しました。 MECEは本当に有効? 最後に、MECE(漏れなくダブりなく)の考え方について学びました。今後、業務で悩んだ際には、この考え方を基に問題を整理していきたいです。 来店客の傾向は? 店舗に来店するお客様を分析することで、今後の店舗運営に役立つアイデアが出てきそうです。現在、来客数が減少している問題があり、分析を通じてその原因を探ることが必要です。スタッフの協力を得ながら、効果的な施策を考えていこうと思います。 学びの実践方法は? 今回学んだ手法は、①手を動かす、②機械的に分けない、③複数の切り口を試す、④悩むくらいなら分ける、⑤失敗は次のステップ、⑥分けることで分かる、というステップで進めていくことが重要だと実感しました。

データ・アナリティクス入門

問題の原因をデータ分析で解明!

問題の原因をどう探る? 問題の原因を探るためには、データを確認しながら原因を突き止めることが重要です。問題の原因を明らかにするために、プロセスを分散して問題箇所を絞り込み、原因の仮説を立てるのが効果的です。問題がある場合、その結果には必ずその流れがあり、その流れを押さえることで、プロセスのどの段階に問題があるのかを特定できます。 解決策の検討はどう進める? 解決策を検討する際は、複数の選択肢を洗い出し、根拠を持って絞り込むことが求められます。ステップを踏んでデータを分析し、問題解決の精度を高めることと、仮説を試しながらデータを収集し、より良い問題解決に繋げることは、両者のアプローチを組み合わせることが効果的です。まず手始めに身の回りのデータを分析すること、分析の練習を積み重ねること、そしてどんな分析計画を立てるかシミュレーションし、どんな情報を誰から収集するのか、データはどんな形で収集すればよいかを考えることが大切です。 シンプルで低コストなA/Bテストの利点 A/Bテストは、AとBの施策を比較するシンプルなテストです。運用や判断がしやすく、低コストで少ない工数で実施できるため、リスクが少ない。A/Bテストを行う際には、目的や仮説をしっかりと明確にし、有効なデータが集まるまで実施します。ただし、複数の要素をテストしたい場合には別の手法を検討すべきです。また、パターンは同時に同じ期間行うことが必要です。 データ分析の第一歩は何から始める? 解決策を考えるときには、必ず複数の選択肢を検討し、「ステップを踏んでのデータ分析」と「仮説を試しながらのデータ収集」の両輪で分析を行うことが効果的です。分析が苦手な方には、まず身の回りのデータを分析すること、分析の練習を積み重ねること、そして問題にはそこに至るまでの流れがあることを意識することをお勧めします。

クリティカルシンキング入門

踏み込むデータ、広がる発見の世界

データと本気で向き合う? データの用い方や見せ方について再確認でき、また新たな発見を得ることができました。従来は説得力や妥当性を高めるためにデータを利用してきましたが、今回の講習では「データとの向き合い方」自体に踏み込むことで、さらに可能性が広がると感じました。踏み込むというのは、データを分解・分析し新たな発見につなげることを意味します。これまでは、一定の目的が達成できればそれ以上深堀りしなかった自分を反省し、今後は偏りを減らしてより深く分析することで、発見の数や他者への探求の深さ、そして説得力の向上につなげたいと思います。単に表面的な理解で終わるのではなく、データから何が見えているのかを追求していく姿勢が大切だと感じました。 業務で分析は活きる? また、業務においては分類・分解・分析が多くの場面で役立つと実感しました。たとえば、目標設定では、市況や需要予測に基づいてシェアや販売量を設定し、その根拠となるデータや分析結果をもとに説明することで、計画の信頼性が高まります。実施計画においては、マーケティング戦略や営業活動の手段、ターゲット、期待できる効果、効果が現れるまでの時間などを細かく整理し、実行者、評価者、受益者それぞれとの連携を明確にすることが可能です。さらに、効果測定では、シェアや販売量・金額と実施計画との因果関係を明確にして、次のアクションの策定や判断につなげることができます。 分析手法を検討する? こうした業務プロセス全般において、データの分類・分解・分析は有効な手法です。具体的には、説明が必要な場面で、利用可能なデータや参考になる情報がないかを常に意識し、検討することが大切です。たとえば需要予測においては、単に過去の推移を見るだけでなく、季節要因や提供者ごとの特徴も踏まえて分析することで、より実効性のある判断が下せると感じました。

データ・アナリティクス入門

気づきを得た!ABテストでSNSフォロワー倍増作戦

ABテストの学びを深めるには? 問題の原因を探るためのポイントと、適切な解決策を決定するための手法である「ABテスト」について学びました。 まず、問題の原因を探るためのポイントとして、以下の二つが挙げられます。 1. プロセスに分解すること。 2. 解決策を検討する際には、複数の選択肢を洗い出し、その中から根拠をもって絞り込むこと。 ABテストの手法はどう実行する? 次に、ABテストの手法についてです。ABテストでは、できる限り条件を揃えることが重要です(例えば時間帯や曜日)。具体的なステップは次の通りです。 1. 目的を設定する。 2. 改善ポイントの仮説設計を行う(ABテストの立案)。 3. 実行する。 4. 結果の検証と打ち手の決定を行う。 SNSフォロワー増加策の提案 直近の課題として、所属組織の公式SNSアカウントのフォロワー数増加策にABテストを活用したいと考えました。 具体的な解決案は以下の通りです。 - 目的の設定:フォロワー4000(現在2000) - 検証項目:フォロワーの属性、いいね回数、再投稿回数、テキストの文体、メディアの有無 - 仮説:文体が固くとっつきにくいのではないか - 解決策:ABテストを行い、1週間程度、「ですます調」と「だである調」で投稿の文体をテストする この課題解決案を所属部署に提案します。 問題解決の手順は? 最後に、問題解決の4ステップを説明します。 1. What:問題の明確化→同業他社に比べてフォロワー数が増えない 2. Where:問題箇所の特定→投稿への反応が少ない(いいね、再投稿) 3. Why:原因の分析→投稿頻度が少ない?文体が固い? 4. How:解決策の立案→ABテストで文体を変えて投稿してみる 以上、学んだ内容と計画した解決策について共有させていただきます。

戦略思考入門

差別化の鍵を握る自社の強み発見

現状分析の秘訣は? 自社の差別化を検討するには、まず自社の現状を徹底的に分析することが重要です。他業種を含む自社および他社の情報を客観的に整理するためには、フレームワークが非常に有効です。差別化施策を立案する際には、以下のポイントを考慮する必要があります。まず、ターゲットが明確に絞られているかどうかを確認します。次に、ターゲット顧客にとって価値があるかどうか、また他社が簡単に模倣できない独自性や自社の強みが打ち出されているかを検討します。そして、実現性や持続性に課題がないかどうかや、利益率が向上する施策になっているかも確認します。これらの検討には、自分の意見だけでなく周囲の意見を取り入れることが重要です。VRIOフレームワークを活用することも役立ちます。 ターゲット整理はどう? 現在、自社は幅広い顧客層に対して製品を提供しており、製品価格によってニーズや競合が異なります。顧客ターゲットの分類を大まかに製品ベースで行っていますが(例:ハイエンド、ボリュームゾーンなど)、この分類が顧客ターゲットに適切にマッチしているかどうか、VRIOを用いて整理したいと思っています。 組織文化の魅力は? さらに、他社が模倣できない要素として自社の組織文化があることに気づきました。この高いシェアや顧客満足度は、先輩方が築いてきた良い文化に基づいていることを理解しました。 話し合いで見出す? 差別化を打ち出すためには、自社の強みや他社情報を客観的に把握し、部署内のグループ長と共にVRIOを用いて話し合うことが重要です。そして、差別化を行った結果を来年の施策に反映させます。最後に、チーム内のメンバーに対し、自社に貴重な人材が集まっていることや、この文化が他社には簡単に模倣できないものであることを伝え、全員のモチベーションをさらに高めることが目指されます。

「分析 × 結果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right