戦略思考入門

捨てる勇気で掴む新たな可能性

どこを分析すべき? 客観的に情報を捉え、定量的に分析することは重要です。勝てるポイントを見極め、選択と集中を行うことで、効率的な資源配分が可能となります。このためには、高コスト・高品質・時間・労力・効率・利益率・回転率といった多方面からの分析が必要であり、どこに投資するのかを明確にすることが大切です。 優先順位はどうする? 「選択と集中」という考え方は、言い換えれば「捨てる勇気」を持つことにも繋がります。限られた資源を最適に活用するためには、何を優先し、何を後回しにするのかという優先順位を付けることが求められます。そして、何を捨てるべきかという理由を探し、その反対に捨ててはならない理由を考えることも、優先順位の明確化に役立ちます。 品質はどう選ぶ? 捨てることが良い結果をもたらす場合もあります。例えば、顧客が喜ぶと思って商品を過度に高品質にすることでコストがかかることがありますが、品質を少し落としても販売価格を下げることが顧客の望みである場合も少なくありません。 本当に改善できる? 人は習慣を変えることに抵抗を示す傾向があります。しかし、始めたことをやめる際には、それが最適な選択であることを確認できるようにすることが大切です。例えば、重複している定例シートの作成や、必ずしも必要ではないダブルチェック、意味のない定例業務にリソースを割く意味を再評価する必要があります。 効果はどこに現れる? 結論として、費用対効果や得られる結果を考慮しながら資源の投資先を決定し、冷静にリソースの分配先を選ぶことが重要です。そのためには、批判的な思考を持ち、無駄を見つけたときにはそれをやめてみる勇気を持つ必要があります。これらを客観的かつ定量的に考え、判断することが求められています。

クリティカルシンキング入門

批判的思考で深める分析術

本当に合っているか? 大前提として、「その答えは本当に正しいのか?」と自分自身に問いかけ、批判的に考えることが重要です。以下の手法を活用していきたいと思います。 整理のポイントは? まず、データを視覚的に整理し、合計や割合、昇順下降順で加工することで視覚的に情報を得られるようにします。全体を定義したうえで、漏れがなく重複しないように(MECEの原則に基づいて)分解を行います。この際、「いつ」「誰が」「どのように」という切り口から考えることがポイントです。 どの角度で考える? さらに、分析を効率的に進めるために型やフレームを身につけることが大切ですが、まずは手を動かし、そこから見えてくるものに対し「この角度はどうだろう?」や「この視点に漏れはないだろうか?」と批判的に思考を繋げていきたいと思います。 分析の仮説は? 営業戦略やプロジェクトの方針を検討する際には、営業データを多角的に収集することを心がけます。しかし、現状の分析が広がりすぎてしまう傾向があるため、大まかな見立てを立て、仮説を持って分析を行えるようにしていきたいです。 伝え方の工夫は? また、分析結果や方針を伝える際には、データを視覚的に整え、受け手の理解を深める努力をしたいと思います。具体的には、次のことを心がけます。まず、業務が「誰にとっての」「何のための」「どこまでをゴールにした」ものなのかを明確にします。そして、事象を分析する際には、必要なデータが十分に揃っているか確認します。作業を進める中で、分析に漏れがないか、異なる角度から検討が可能かを一度立ち止まって考察します。最後に、データを視覚的にわかりやすく作成することで、自身の分析にも役立ち、他者への説明の際にも理解しやすくなるよう努力します。

クリティカルシンキング入門

具体的な問いが会議を変える

議題はどう定める? 問いを明確にし、常に書き留めておくことの重要性を実感しました。特に会議の場で「~について」という曖昧な議題を出していたことに気づき、何を相談したいのか具体的にすることで、有意義な議論につながると感じました。 会議の目的は? 会議や課題解決に取り組む際、何について考えているかを見失ってしまうことはよくあります。集中していると目的がぼやけるため、会議では必ず議論する内容を表題として残すなど、工夫が必要だと改めて思いました。また、課題解決のために情報収集を行い、エクセルなどで集約する際も、統一した表題で課題を明記しておくと、全体の目的が明確になり助かります。 議論の焦点は? さらに、各シーンにおいて問いを明確にする工夫が求められます。たとえば、会議では自分や他の方が挙げる議題に対して、まず何を相談したいのかという問いをはっきりさせることで、議論の焦点を絞ることができます。アンケート結果を元に施策を検討する際も、アンケート自体が目的にならないよう、何を解決したいのかを明確にし、分析段階で本来知りたかったこと、実現したかったことを見失わずに次のアクションを検討する流れにつなげることが大切です。 企画はどう貫く? 商品の企画・立案においても、世の中の不満を解決するという初志を常に意識することで、製品開発の過程で目的が逸れてしまうことを防ぎ、コンセプトの一貫性を保つ効果があると感じました。 目的と問いはどう? 総じて、議題は「何を相談したいか」を明確にし、問いは常に視界に入る場所に記録しておくことが重要です。また、情報収集時には目的と仮説をしっかり立てた上で実施し、関係者間で共通理解を図るために問いを共有する工夫が必要だと考えます。

データ・アナリティクス入門

データ分析で失敗しないための初めの一歩

データ分析の初め方とは? データ分析を始める際、最初に注意すべき点は、いきなり「How」に飛びつくのではなく、まず原因を特定することが重要です。また、何を理想的な状態とし、そのギャップをどう見なすか、関係者との合意を得ておくことが肝心です。 MECEの概念とその活用法 MECE(Mutually Exclusive, Collectively Exhaustive)の概念については、有意義な切り口で切り分けることが大切ですが、乱用には注意が必要です。 データ分析の精度を高めるには? データ整理とデータ分析の違いや、分析の精度と説得力の関係については、明確な理解が求められます。例えば、データ分析がどのケースにより合致するかも考慮すべきです。現状から改善を目指すケース、あるいは未来に向けた戦略的なケース、それぞれに適したアプローチがあります。また、需要予測と異常検知といった異なるケースでの適用の違いも理解しておくと役立ちます。 ケースAの分析方法は? ケースAでは、例えばWEBサイトからの問い合わせデータや営業がSFAに入力した案件データを分析することが考えられます。現状の問い合わせ数に基づき、来期の目標やポテンシャルを過去のデータから算出するために変数分解を行います。 ケースBでの説得力あるストーリーの構築法 一方、ケースBでは、例えばグループウェアの切り替えに際し、役員を説得するためのデータ準備が求められます。説得力のあるストーリーを構築するために、現実的に入手可能なデータを調べることが重要となります。 具体的な結果を得るために これらのポイントを踏まえ、データ分析の取り組みを進めることで、より具体的で説得力のある結果を得ることができます。

データ・アナリティクス入門

小さな実験が拓く大きな未来

仮説はどう捉える? これまでの演習よりも多くのデータに触れる機会があったため、ただデータを見るだけではなく、まず「こういう仮説があるのではないか?」という視点を持って取り組むことが重要だと実感しました。また、仮説は一つに固執せず、他の可能性も網羅的に考えることで、思いつきに頼らないアプローチができると感じました。 PDF加工の落とし穴は? 一方で、PDFデータの加工には非常に頼りになる一面があるものの、誤認識により表の数字が間違うケースもあったため、過信せずに慎重に取り扱う必要があると痛感しました。 数字整理はどうする? ファネル分析とABテストは、どちらもすぐに実践できる手法として役立つと感じました。ファネル分析では、業務フローの数字が断片的にしか取得されていない現状を踏まえて、業務フローを整理し、必要なデータを集めてファネル化することが求められます。 仮説検証は進んでる? また、ABテストでは、うまくいっていない点に対して仮説を立て、比べるべき内容を明確にして、結果が確認できるデータを準備することが大切です。これらの手法を同時期にテストし、比較検証することで、より精度の高い分析が可能になると感じました。 分析の意義は何? さらに、なぜファネル分析やABテストが必要なのか、その意義を自分なりに言語化することも重要です。今週学んだ内容を整理し、データアナリティクスの重要性を前提として、具体的な提案にまとめる作業は大変有意義でした。 実践の意味は何? 最後に、実データに毎日触れてトライアンドエラーを重ねることが、さらなる改善点の発見につながると実感しました。これからも、日々の実践を通じて知見を深めていきたいと思います。

データ・アナリティクス入門

ABテストで見える進化の軌跡

どうプロセスを分解する? どこに問題があるかを明確にするため、プロセスを段階ごとに分解することが重要です。まず、問題発生箇所(Where)を複数の切り口で特定し、それぞれに対してABテストを実施することで仮説検証を行います。こうした手法は、効率的なコストパフォーマンスに寄与すると同時に、その後の具体的な取り組み(HOW)を事実に基づいて策定するために欠かせません。 どうデータを把握する? 私は製薬会社でMRを担当しており、担当エリアの製品が伸び悩んでいる状況をデータ分析によって明確に把握しました。売上や市場シェアの推移を詳細に検証することで、次のアクションに向けた具体的な問題点の特定が可能となりました。たとえ、担当者固有の感覚や直感に頼りがちな部分があっても、事実ベースの行動こそが仮説検証を丁寧に進める鍵であると実感しています。 何が効果的なABテスト? 具体的なABテストとしては、Aパターンではメディカル専門部署との同行訪問を実施し、Bパターンでは他施設での成功事例を共有する取り組みを行いました。一定期間のテストを経て、どちらのアプローチがより効果的であったかを定量的に評価し、その結果を基盤に最適な施策をエリア全体に展開する方向性を見出すことができました。 どう成長を促進する? 担当エリアの製品成長を促進するための手順は、まず現状把握として売上や市場シェアを分析し、成長が停滞している顧客層を見定めることから始まります。次に、影響力のあるキーパーソンや波及効果の大きい対象をリストアップした上で、仮説を設定しABテストを実施します。その後、テスト結果を定量的に比較し、最も効果が高い施策をエリア全体に適用し、次のアクションに反映させるという流れで進めています。

戦略思考入門

視点を広げる戦略的思考の重要性

全体視点は必要? 経営者の視点で考えることに非常に感銘を受けました。目の前の仕事に没頭しすぎると、視野が狭くなりがちです。特に、自分の事業に専念していると、全体を見る視点が欠けることもあります。この問題に対して、私は全社的な視点を常に持ち続ける必要性を感じました。 恐れず選択できる? また、「ジレンマを過度に恐れない」という教えは非常に有益でした。例えば、納期と品質、短期的効果と中長期的効果の間で最も良い選択肢を見つけることです。この過程で、他者の判断基準を頭から否定せず、じっくりと考える姿勢が求められます。ジレンマを克服するためには、創造的なアイデアを粘り強く考え続けることが重要だと実感しています。 戦略の本質は何? 戦略的に考えることを「漫然と仕事をしない」と解釈しました。日常の業務に忙殺されているときこそ、大局的な視点を持ち、自分の視界を広げることが求められます。これから新しい領域にも取り組むことがあり、常に広い視野と多角的な視点を持つことを意識して仕事に取り組むつもりです。 全体戦略をどう見る? 日々の業務と全体戦略の関連性を意識し、短期的な結果にとらわれすぎないように心掛けます。常にその意識を持つことは難しいかもしれませんが、3年から5年先を見据えた考え方や動き方を忘れないようにします。そして、SWOT分析やPEST分析といった戦略フレームワークを実践で活用し、データに基づいた意思決定を心がけたいと思います。 戦略共有は有効? 戦略的思考に関するトレーニングを取り入れ、フレームワークや戦略分析の機会をチームで共有していくつもりです。時間が限られている中での優先事項として、この取り組みの重要性を増していきたいと思います。

データ・アナリティクス入門

データ分析の基礎から見直す重要性

比較対象を誤解することの影響は? 分析の基本は比較にあります。特に、比較する対象が「類似性の高いもの同士(Apple to Apple)」であることを意識する必要があります。これまで自身で行ってきたデータ分析において、その認識が誤っていたと感じました。しばしば「異なるもの同士(Apple to Orange)」を比較しようとしていたことに気づいたのです。 データ作成の目的を明確にするには? また、データ作成の際には、まず「目的」を明確にすることが重要であると学びました。ライブ授業で問題に取り組んだ際、大切なポイントを見落としていたことがありました。今後、データ分析を行う際には、まずその分析の目的を再確認し、その上で分析を進めていきたいと思います。 仮説を線で考えることの重要性 さらに、仮説立てに関しても、全体像を広く理解し、点ではなく線で考えることが重要です。これにより、いくつかの仮説をより具体的に報告できるよう努めたいと思います。特に、SEOに関わる数値分析や会員登録までのユーザー動線の見直しに活用できると感じています。 効果的なデータ分析方法とは? データ分析の目的としては、以下の点に注意したいと考えています。 ・さまざまなタイプのデータの特性と、陥りがちな分析の落とし穴に注意する。 ・定量データを用いた分析の重要性を認識し、その活用を図る。 比較と改善のためのディスカッションの重要性 最近は、コンペティターのメディアとの比較や、ユーザー登録導線の参考メディアやランディングページと自社サービスの比較を十分に行えていませんでした。これを改善するため、チームメンバー全員でグループディスカッションを行い、検証結果を導き出す方法を取りたいと思います。

データ・アナリティクス入門

朝活で実践!残業削減の挑戦

正解はどこにある? ビジネスにおいて、問題の「正しい」原因を特定するのはほぼ不可能です。ひとつの「正解」を求めるのではなく、さまざまな手法を試す中で気づくポイントがあると感じます。具体的には、What、Where、Whyの順に仮説を絞り込み、Howで実践するというステップを何度も繰り返すことが重要です。 根拠は見えますか? 原因を追及するためには、まず業務や問題をプロセスごとに分解すること。そして、考えられる複数の選択肢を洗い出し、根拠を持って絞り込む作業を行うことで、データに基づいた分析を進め、問題解決の精度を高めていきます。さらに、仮説を試しながらデータを収集し、結果を組み合わせてより良い解決策に導く方法が有効だと考えています。 実践の鍵は何? この考えをもとに、まずは自分自身の業務を一つのプロジェクトとして見立て、実践してみることにしました。具体的には、例に挙げられていた通り、残業時間を削減する取り組みから始めるつもりです。私の業務は3月から徐々に繁忙期に入り、5~6月がピーク。今回は複数の新規プロジェクトも同時進行しているため、学んだ知識を実際に試し、可能であれば周囲のメンバーも巻き込むことを目標としています。 朝の時間は有効? また、グループワークの際にも公言した朝の時間の有効活用を、具体的な行動計画として取り入れていこうと思います。早く出社するとつい業務に取りかかってしまいがちですが、少なくとも30分はこの計画に充てるよう心がけます。これまでなかなか実践できずにいたのですが、今週から出社時はカフェで、在宅時は始業前に、徐々にルーティンを整えつつあります。これからは、朝の時間をうまく活用し、残業削減プロジェクトを推進していく所存です。

マーケティング入門

市場分析で見えた新たな戦略

市場をどう切り分けるべきか? 市場全体を、一つの集団として扱う際には、不特定多数の人々を「同じ」性質でまとめるという方法があります。この性質には、人口動態や地理、嗜好などがあります。私自身、この切り分けに関してまだ自身の引き出しが少ないと感じるので、丁寧に行いたいと思います。 客観的な判断基準とは? 切り分けた結果については、市場の規模、市場の成長性、競合状況の3つの軸を基に客観的に判断することが重要であると理解しました。この3つは、自社の商品をよりニーズのある市場に届けるために、必ず抑えておきたい要素です。 セグメンテーションとターゲティングの違いは? セグメンテーションによって市場を絞り込み、ターゲティングでさらに具体的に絞り込むイメージです。その上で、自社の位置づけを優位にするように考える必要があります。位置づけの基準となる2つの軸について、自社が良いポジションとなることを考えつつ、顧客のニーズと合致することが購買に繋がるため重要です。 ポジショニングの課題にどう取り組む? 最終的に、ポジショニングの設定が課題となると感じています。そのため、2つの軸について更に検討を深めたいです。現在、競合と価格や規模、質で戦うことは厳しい状況にあります。そのため、何かに絞るのか、または広げるのか(リスクはありますが)、0から作り直すつもりで設計する必要があります。 競合が満たせないニーズをどう見つける? まずは、競合が満たせないニーズの発掘が必要です。自社のサービスがニーズに合うような分析を行い、戦略的に市場で戦うための方向性を模索します。今期の流れである程度の方向性が見えてくるため、来期に向けた選択肢を設けるステップを考えたいと思います。

クリティカルシンキング入門

論理的思考で解決力を磨く

論理伝達の工夫は? クリティカルシンキングを通じて、「問いと答え」すなわち主張と根拠の考察を学びました。この過程で、相手に伝えるためには、論理的な理由を整理し、配慮を持って伝達することが大切だと強く感じました。 目的共有って大事? まず、問題解決の際には、何を目的に行うのかを明確にし、その目的をチーム全員で共有することが重要です。目的が曖昧であったり、認識にズレがあると、問題を適切に分解することが難しくなるため、常にこれを実践していきたいと考えています。 根拠の伝え方は? 次に、論理的な根拠づけです。結果を分析し、それに対する論理的に納得できる理由を明快に相手に伝えるためには、自分の中で思考を整理し、深める必要があります。思いつきで提案するのではなく、しっかりと考え抜くことを忘れずに、実務でこのプロセスを実践していきたいと思います。 提案資料の工夫は? 具体的には、新しいマニュアルを提案する際には、理想のゴールを具体化し、現在の問題点や改善点を整理して上司に提案していきます。また、資料を作成する際は、相手目線に立ち見やすさを考慮した工夫を心掛けます。そして、月次の売上分析では、表やグラフを用いて分かりやすくまとめ、改善点を見つけ出していきます。 改善はどこから? 以上から、まずは現在の問題点を明らかにし、目的をはっきりさせることを最優先に行っていきます。そして、目的に基づき、どの部分を改善すべきかを分解し、分かりやすく資料や文章にまとめるように心掛けます。チーム内の意見を聞き入れながら問題点を明確にし、資料を作成する際には、重要なポイントを目立つように配慮し、文章に添えてグラフや表などを活用して視覚的に伝えることを意識していきます。

アカウンティング入門

PLで変わる利益の見方と経営戦略

PL読み方で経営判断に役立てるには? PL(損益計算書)の読み方が変わることで、どの項目が利益を生み出しているのかを正確に把握し、経営判断に役立てられると考えました。例えば、低価格戦略を採用する場合、売上総利益率の管理が重要であり、原価や人件費の削減が利益確保の鍵となります。また、商品の回転率向上や付加価値の高い商品の販売比率を分析して、売上を最大化する施策を考えることができます。PLを利益構造の視点で分析することで、経営戦略の精度を上げ、持続的な成長に結びつけることを学びました。 病院経営で利益を上げるには? 病院経営においても、診療報酬や自費診療の構成を分析し、どの診療科やサービスが利益を生んでいるのかを明確にすることが重要です。例えば、外来、入院、手術、検査の各部門の収益性を分析し、利益率の高い診療を強化する戦略が考えられます。さらに、物品の共同購入、在庫管理の最適化、ICT活用による業務効率化、スタッフの業務フロー改善による労働生産性向上にも役立てたいと思います。 患者の回転率向上に向けた施策は? 病院では「患者の回転率」という視点が特に重要です。例えば、病床回転率を高めるために、退院支援の強化や在宅医療との連携を強めることで入院日数を適正化し、より多くの患者を受け入れることができます。また、外来診療や手術件数を増やすためのスケジューリング最適化も重要です。診療報酬データや患者満足度調査の結果を活用し、どのサービスに改善の余地があるのかを分析することで、経営戦略の精度を高めることが可能です。例えば、患者満足度が低い診療科で業務フローを見直し、患者リピート率を向上させる施策を立てることもできます。このような視点で取り組みたいと考えています。

「分析 × 結果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right