データ・アナリティクス入門

挑む学び!仮説が広がる瞬間

課題と仮説の意義は? 今週は、課題設定と仮説構築の重要性について学び、サンプルデータを用いた実践を行いました。課題を具体的に明確化することで、その後の仮説の精度が向上することを実感しました。また、立てた仮説に固執せず、検証結果に応じて柔軟に視点を変えることの大切さにも気づかされました。仮説が立証されなかった場合には、別の原因を積極的に探る姿勢が求められます。 なぜ業務は偏る? 営業店の業務負荷にばらつきがある場合、単に「業務量が多い」という理由で負担が大きいと判断するのではなく、どの業務が集中しているのか、フローに非効率な点があるのか、人員配置に偏りがあるのかといった具体的な仮説を立てた上で、必要なデータを特定し検証することが重要です。仮説を基に、どのデータを取得し、どのようなグラフで可視化するかを事前に整理することで、分析の精度が高まります。たとえば、営業担当者ごとの業務時間の偏りを分析する際、移動時間の長さや業務の種類が要因となっているかを検証するために、ヒストグラムや散布図の活用が考えられます。 定量指標は何故大切? 課題設定の精度向上には、定量的な指標を明確にすることが不可欠です。業務負荷の偏りを評価する場合は、「1人あたりの業務処理件数」や「1件あたりの処理時間」を指標とし、営業成績の低迷については「訪問件数」や「折衝時間」、「成約率」を基に状況を把握します。現場の意見をヒアリングし、課題感を共有した上で、分析すべきデータを整理することで、的外れな分析を防ぐことができます。 現場の意見は鍵? また、仮説構築とデータ収集の精度を高めるためには、複数の仮説を立て、どの仮説が有力かを検証する手法が有効です。たとえば、「営業成績の低迷要因」として、訪問件数の不足、折衝時間の短さによる十分な説明ができていない、または高額商品の偏った営業活動といった仮説が考えられます。とりわけ、営業活動に関する領域知識が不足している状況では、現場からの意見を積極的に取り入れた仮説設定が必要だと感じました。

データ・アナリティクス入門

営業の新たな武器:ロジックツリー活用法

問題解決にステップで挑む理由は? 問題について「ステップで考える」という当たり前のことができていないことに気づけました。自分の場合、ヒューリスティックに考える癖があり、アルゴリズム的に考えるのが苦手です。文中の「ステップで考える」とは、自分にとって苦手なアルゴリズム的な手法を指しますが、その手法としてロジックツリーの有用性を学べたことが大きな収穫でした。 ロジックツリーの具体的活用法とは? また、ロジックツリーの知識はありましたが、具体的な活用方法を改めて学べたことも大きいです。営業として売上分析をする際にMECE(Mutually Exclusive, Collectively Exhaustive)を意識していましたが、パレート分析に頼ることが多く、満足のいく結果を得られないことが多々ありました。今後はロジックツリーも活用してみたいと考えています。 今回学んだ「ステップで考える」方法やロジックツリーを用いて問題を分析し客観視させることで、問題意識の共有と具体策の議論が行えると期待しています。 社員教育の脆弱性をどう改善する? 私は所属する事業部で社員教育の脆弱性を強く感じています。問題提起を上席者や同僚に行っても、具体的な解決策の議論まで進めないことが多くありました。振り返ると、私の提案がMECEになっておらず、同意は得られても他者を巻き込むことができなかったと感じています。まずは自分の問題意識をロジックツリーに落とし込む作業を業務の合間に行おうと思います。 社員教育の必要性をどう確立する? 具体的には、社員教育の必要性についてロジックツリーを展開しようと思います。まずは「社内」「社外」という切り口で悪影響を及ぼす具体例のツリーを作成します。次に「研修制度」と「自主的な学び」という切り口で現状を示します。最後に、これらを強化・促進するための案を示し、上席者だけでなく同僚へも問題提起しようと考えています。 さらに、他の提案や営業政策などにもロジックツリーを活用してみるつもりです。

アカウンティング入門

B/Sで読み解く経営のヒント

B/Sは何を示すの? B/Sは、企業の資金調達と資金の使い道が数値として表れるもので、借入金は設備投資や運営資金として活用できるため、必ずしも悪い要素ではありません。借入金の返済額(利子を含む)を踏まえて、キャッシュ創出を意識する材料としても活用できます。また、ビジネスモデルの違いにより、流動資産や固定資産、流動負債や固定負債、そして純資産のバランスが変化することを理解することが大切です。事業活動の様子がB/Sの数値に現れるため、企業活動とB/Sの関連性を整理しながら分析する必要があります。 負債と資産の関係は? また、1年以内に返済が必要な負債に対し、すぐに現金化できる流動資産が十分にあるか、あるいは固定資産と純資産とを比較して経営の安定性を判断することも重要です。こうしたB/Sの各項目の役割や、ビジネスモデルとの関連に気づき、それらを活用する視点は非常に価値があると感じます。さらに、具体的な活用例について詳細に考えることで理解がより深まると思います。 借入金の活用は? さらに一歩踏み込んだ考察としては、具体的な事例を用いて借入金がどのように重要な役割を果たしたか、また、異なるビジネスモデルでB/Sの数値がどのように変動するかを検討することが挙げられます。たとえば、ある企業では、資金繰りが困難な状況において、経営者からの借入金を長期固定の社債に切り替えることで、法人および個人のキャッシュフローの圧迫を解消し、資金繰りの安定化を図ったという事例があります。このケースでは、借入金を活用した結果、B/S上で負債(流動負債と固定負債)および流動資産が増加したと考えられます。 企業の分析はどう? 最後に、様々なビジネスモデルを探求し、B/Sの分析を通して各モデルの特徴を理解することが、今後のお客様への説明や意思決定に大いに役立つと感じています。月次面談や決算報告の際に、各企業の事業活動と連動するB/Sの状態や変化を定量的に伝えられるよう、日々の業務の中で準備や分析の練習を重ねていくことが重要です。

クリティカルシンキング入門

ビジネス文書・プレゼン資料を一段上の品質にする方法

学習を通じて得た新たな知識とは? 今回の学習を通じて、適切なグラフの選び方やスライドの作成方法、ビジネス文書がどのように読まれるかについて多くの学びがありました。以下に、それぞれのポイントについて述べます。 グラフ選びでデータをより見やすく まず、グラフの見せ方についてですが、データの種類に応じた適切なグラフ形式を選ぶ重要性を感じました。例えば、時系列データには縦の棒グラフ、変化や経緯を表現したい場合は折れ線グラフが有効です。また、要素を表現する際は横の棒グラフ、要素間の比較には帯グラフが適しています。これにより、データが持つ意味を視覚的に明確に表現することができ、プレゼンの受け手にも理解しやすい情報を提供できます。 見る側に立ったスライドデザインは? 次に、スライド作成のポイントについて学びました。特に印象深かったのは、「見る側の視点に立って主題がわかりやすいように」作成することの重要性です。具体的には、グラフなどで見てほしい部分を強調するために矢印を使用することなどです。これにより、視覚的なガイドラインが提供され、見ている人がパッと理解できるスライドを作ることができます。 関心を引くビジネス文書の工夫 ビジネス文書に関しては、冒頭にアイキャッチを置く工夫が特に有用だと感じました。イメージが湧きやすい、意外性がある、具体的な理由や方法を知りたいと思わせるような要素を盛り込むことで、読む人の関心を引き付けることができます。これにより、実際のメールや案内文の返信率向上に繋がることを期待しています。 具体的な実践計画としては、リード向けメール作成の際には1日最低5件はアイキャッチを配置し、試行錯誤を重ねて改善を図るつもりです。また、フォロー結果を分析する際には1か月に1回以上、プレゼン資料の質とグラフの活用を意識して作成します。四半期ごとの報告プレゼン資料にもこれらの学びを反映し、より質の高い資料を提供することを目指します。 以上の点を踏まえ、今後の業務に活かしていきたいと思います。

データ・アナリティクス入門

仮説思考の極意を学ぶならコレ!

仮説を立てる重要性とは? 仮説を立てる際には、「複数の仮説を立てること」と「仮説の網羅性」が重要です。まず、仮説の立て方のポイントとして、「知識の幅を広げ、耕しておく」「ラフな仮説を作る」ことが挙げられます。知識の幅を広げるためには、「なぜ」を5回繰り返したり、別の観点や視点から見ることが重要です。これにより、あらゆる切り口での仮説立てができ、「複数の仮説を立てること」に繋がります。一見関係ない情報や常識はずれな仮説であっても、新しい事柄が見えてくる可能性があるため、発想を止めないことが大事です。 仮説検証の効果的な方法は? 次に、仮説を検証するポイントとして、「必要な検証の程度を見極める」「枠組みを考え、情報を集めて、分析する」「仮説を肉付けする、または再構築する」があります。例えば、3Cや4P、5つの力といったフレームワークを使い、必要な検証の程度を見極めます。その後、情報を集め、分析を行い、仮説と実際の結果が一致するかどうかを確認します。予想通りの結果でなければ、仮説の再構築を行います。 ターゲットを定めた企画立案のポイント 次に、キャンペーンの企画立案に関してです。現状としては、売上向上が目標ですが、ターゲットを定めずに漠然と企画立案を行っている状態です。これを改善するためには、ターゲティングを適切に行い、自社の強みを活かすような企画を実施することが重要です。また、プロモーションもターゲットに合わせて変化させる必要があります。 新規事業のターゲット特定はどう進める? 新規事業を行う際のターゲットの特定については、自社で持っているデータと一般的にオープンなデータを組み合わせることが有効です。さらに、アンケートなども活用して仮説を立てることが求められます。具体的なプロセスとしては、①顧客ニーズの推測と自社の課題の明確化、②仮説を立てる、③実際のデータを基にした分析やフレームワークの活用、④仮説が正しいか確認し再構築、⑤実運用、⑥立てた仮説が正しかったか効果検証、の順に進めていきます。

データ・アナリティクス入門

ロジックツリーで解決する新たな視点の探求

決定木と共通点は? ロジックツリーは問題解決に役立つと感じました。特に決定木と類似している点があることに気付きました。問題解決にはロジックツリーを利用し、業務フローを考えることは個人的に決定木のように解釈しています。「決定木」については、個別に確認を行ってみたいと考えています。 分解手法は何が違う? 層別分解については、粒度を揃えて階層毎に記載し、全体的な視点で考えることが重要だと感じました。変数分解では、細分化することで解決策を検討することが可能となります。 フロー分析は有効? 私は業務フロー分析を行い、RPA(自動化)のタスクを考えることがあります。問題解決プロセスを活用して、層別分解を業務フローに応用してみようとしています。 変数分解を深める? 変数分解は、利用頻度が低かったため、まだ理解が浅いと思います。すぐに実用できるアイデアは浮かびませんが、望む結果に至らなくても、試行錯誤を続けて活用できるよう努力したいです。 集計から何を探る? データ集計の結果を元に、ロジックツリーを用いて、漏れや重複をなくすだけでなく、別の観点での検証が可能かどうかを探りたいです。 KPI改善の鍵は? KPIのデータ集計結果において、乖離や数値の増減があった場合には、ロジックツリーを使って分析しています。MECEをベースに、問題解決に向けた改善活動に取り組んでいます。改善活動自体にもロジックツリーを適用してみることを考えています。 他チームの意見は? 他チームの分析結果にもロジックツリーを用いて、新しい視点が得られるかを検証したいです。他チームの報告を聞く際、通常は前提が正しいという説明を受けますが、その場で疑いを持っても、すぐに相違点を指摘するのは難しいです。 日常でどう活かす? 日常の業務において、データ分析以外にもロジックツリーを様々に適用し、考える習慣を試してみます。活用範囲を広げ、新たな気づきやスキルを獲得できればうれしいです。

クリティカルシンキング入門

数字の力を引き出す分析の秘訣

データ分析の重要性とは? データに基づいて原因を突き詰めていく際、数値を分解しグラフなどに視覚化することで、傾向が見えてくることがあります。さらに、その数値を分解していくことで、他者に説明する資料としても、表よりもグラフの方が一目瞭然です。 効果的な分解方法を探る 分解の方法としては、"いつ(when)"、"誰が(who)"、"どのように(how)"などがあります。博物館のワークでは外的要因に注目しましたが、そのものの数値自体も分解することが大切です。 発見を得るための試行錯誤が不可欠 切り口や切り方を変えて、いろいろ試してみると違った発見があるかもしれません。キリの良い数字でまとめるのではなく細かく刻むことで、見えてくることがあります。また、段階的に切り口を広げて掘り下げていくことで、新たな発見ができることもあります。様々なアプローチを用いて分析をする結果、データに説得力が生まれます。 分析のプロセスから何を学ぶか? 分析を進める中で、切り口や刻み方によって何も見えてこないこともありますが、それもまた意味のある結果だと言えます。このように色々な方法を試すことが重要です。 実際のデータで見る数字の力 私はあまり数字を扱う業務はありませんが、数字を分析することで見えてくるものがあります。例えば、製品群ごとの売上金額や粗利金額の月別、前年比の比較、契約件数と売上金額の関係性、契約金額と粗利益率の関係などを調べることができます。 優先すべき分析視点とは? これらのデータから、売上低調製品の原因や高粗利商品などの理由を探ることができます。月に一度、売上データを集計し分析を行い、そのデータを基にプレゼン資料を作成します。資料作成の際には、ファクターに基づき数字を視覚化することで説得力のある資料を作成します。 営業活動におけるデータ活用 また、自分の営業活動においてもアポイント数や進捗などを視覚化し、得意先や物件ごとの売上金額、粗利金額などをまとめています。

データ・アナリティクス入門

プロセスで発見!学びの秘密

原因はどこにある? 問題の原因を探るためには、まずプロセスを細かく分解し、各段階でどこに問題が潜んでいるかを仮説検証する手法が重要です。複数の選択肢を洗い出し、根拠に基づいて適切な判断を下す点にも着目しています。また、A/Bテストを実施する際は、できるだけ条件を整えた上で比較することが求められます。 効果的な分析法は? 具体的なデータ分析の方法としては、まずステップを踏みながら問題の精度を高めるアプローチと、仮説をもとにデータを収集し、より良い解決策に結び付ける手法が組み合わされています。これにより、最適な解決策の検出が可能となります。 分解とテストの極意は? プロセスを分解する方法とA/Bテストのポイントを組み合わせることで、より高度なデータ分析が実現されます。仮説検証と条件を揃えた比較の両面からアプローチすることで、実際の検証結果に基づいた改善が期待されます。 実例から学ぶには? 実際の事例としては、ポイント会員向け利用促進キャンペーンにおいて、若年層の反応を探るために、若者が関心を持つジャンルの店舗を複数選定し、クリエイティブのA/Bテストを実施する計画が挙げられています。過去のキャンペーンデータを活用し、ポイント付与がどの層の購買に影響しているかを機械学習を用いてアプローチする手法も取り入れられています。 次回でどう活かす? 次回のキャンペーンでは、会員データからターゲットとなる層の購買パターンを複数洗い出し、ロイヤルカスタマー化につながる経路を明らかにすることが目標です。洗い出されたカスタマージャーニーに基づき見込み客にアプローチし、その反応をPDCAサイクルで検証・改善していく計画です。 全体をどう見る? 全体として、プロセスの分解とA/Bテストの方法を的確に押さえたアプローチが示されており、仮説検証を実際のデータに基づいて試すことで理解が一層深まる内容になっています。今回学んだ内容を次のプロジェクトでどのように活かせるか、引き続き考えていきましょう。

データ・アナリティクス入門

データ分析で見抜く!成功の秘訣とは?

代表値や散らばりは? 今回の学びでは、データ分析における重要なポイントを整理しました。まず、定量分析を行う際には、「代表値」と「ちらばり」の両方を把握することが重要です。代表値には、単純平均や加重平均、幾何平均、中央値があり、それぞれの特徴を理解することでデータの中心を捉える手助けになります。また、平均値を算出する際には、外れ値の確認が不可欠です。ちらばりには、標準偏差や正規分布があり、それらを活用してデータの散らばり具合を把握します。さらに、データをビジュアル化することで、特徴的な傾向が捉えやすくなりますが、その際には正しいグラフを選択することが求められます。 相関か因果か? 次に、相関関係と因果関係の分析についてです。相関とは二つの要素がどのように関連しているかを示すものであり、因果関係とは原因と結果の関係です。これらをセットで分析し、次の打ち手を考察することが重要です。しかし、因果関係は誤認しがちであるため、自分の都合の良い分析結果に偏らないよう、常に意識して考えることが必要です。 分析は比較ですか? 今回の復習では、分析とは比較であることを再確認しました。問から仮説を立て、データ収集を経て、それを検証するというプロセスを繰り返すことが基本です。インパクトやギャップ、トレンドなど様々な視点からデータを分析し、グラフや数値、数式を使うことが有効です。 ツール選択はどう? 現状では、時系列分析を多用しており、分析ツールとしてTableauやSPSSを利用しています。これにより、顧客データや売上データ、プロモーション費用などを扱っています。具体的な分析例として、まず相関関係の分析においては、売上とプロモーション費用との関連を見て、どのプロモーションが効果的であるかを判断することを目的としています。また、パレート分析では、顧客をグルーピングし、どの顧客が優良であるかを可視化しています。これにより、優良顧客の特徴を把握し、効果的な販促やプロモーション計画の立案に活かしていきます。

データ・アナリティクス入門

平均だけじゃわからない、データ物語

代表値の選定はどう? データ分析の学びで、まず印象に残ったのは代表値を考える際に、単純平均だけではなくデータのバラつきを十分に検討する必要がある点です。普段便利に使われる単純平均ですが、その値が適切な代表値になっているかは、データの分散や偏りを合わせて考えなければならないことに気づきました。具体的には、データの性質に応じた代表値として、加重平均や幾何平均、極端な値の影響を抑えた中央値など、さまざまな手法を学びました。 標準偏差はどう捉える? また、バラつきを評価するために、標準偏差(SD)や2SDの考え方を改めて認識することができました。統計的な手法を用いることで、人が感じがちな「恣意的な操作があるのでは」という疑念に対しても客観的な根拠を示すことができる点が非常に興味深く感じられました。2SDの範囲が極端な値を排除する役割を果たすという考え方には納得できるものでした。 評価の分散はどう見る? 業務では主に人事データや研修後のアンケート結果を扱う中で、10段階評価の平均値のみならず、標準偏差や中央値を併せて分析する重要性を再認識しました。例えば、講評の平均値がある数値であっても、評価が全体的に均一なのか、それとも高評価と低評価に二極化しているのかは、ばらつきの分析なしには判断できません。標準偏差が大きい場合は評価が分散し、逆に小さいと評価が平均近くに集中していることが明確になるため、データの分布や偏りを把握する上で非常に有用です。 集計手法はどう進める? この手法を実践するために、まずは研修のアンケート結果をExcelに集計し、標準偏差(STDEV.PまたはSTDEV.S)や中央値(MEDIAN関数)を計算します。次に、標準偏差が大きい場合にはヒストグラムを用いて評価の分布を視覚的に確認し、外れ値が全体に与える影響についても検討します。こうした分析を定期的に行うことで、研修の質や受講者の満足度について、従来の単なる平均値以上の具体的な洞察が得られると考えています。

データ・アナリティクス入門

仮説で解く!未来への挑戦

仮説分類はどう理解? 仮説の分類について学んだことで、結論の仮説と問題解決の仮説という二つの考え方を理解することができました。結論の仮説は、ある論点に対して仮の答えを示すもので、たとえば、ある飲料メーカーがノンアルコール商品の健康面へのアピールを通じて客層を拡大した事例が印象的でした。一方、問題解決の仮説は、現状の現象から原因を究明し、対策や予防策を講じるための仮説であり、データの収集と分析能力の向上が不可欠であると感じました。 仮説で説得力は増す? また、仮説を立てることで検証マインドが育ち、他者に説明する際の説得力が増すことを実感しました。エビデンスに基づく行動が、具体的な改善策の実現を後押しすると考えています。 減少原因は何? 具体的な事例としては、まず勤務先の大学において、受験者数が過去4年間で大幅に減少している現状があります。この原因を解明し、定員確保につなげるためにも、仮説の活用が大変有効だと感じています。 精神問題はどう見る? さらに、偏差値の高低にかかわらず、精神的な問題を抱える学生が増加している点にも直面しています。ADHDやASD、ゲーム依存などの問題が見られ、これが原因で学生間や教職員とのトラブル、保護者からの苦情、さらには退学や留年の増加につながっていると考えています。これらの現象について、過去の研究や調査、実践活動報告を参考にしながら、本学での適切な対策を検討するために、問題解決の仮説を立てて取り組む必要があると思います。 対策の進め方はどう? 具体的には、まず学生相談室や担任、教職員へのアンケートを実施し、各部署からの情報を集約します。次に、問題とされる事案の件数や種類、これまでの対応内容とその結果を整理し、国のガイドラインやマニュアルと照らし合わせることが求められます。さらに、他大学で実施されている取り組み事例を調査し、本学で実施可能な対策案を策定します。その際、専門知識を持った人材や協力可能な関係機関との連携も視野に入れる方針です。

データ・アナリティクス入門

思考を深める分析スキルの実践

ロジックツリーの見直しは? 私はこれまでにロジックツリーを用いてメモを取っていたものの、情報に漏れや重複があると感じていました。分析には多様なフレームワークや考え方があるため、正しく使用しないと適切な結果を得られないことを再認識しました。特に、MECE(Mutually Exclusive, Collectively Exhaustive)については軽視していましたが、集団を正確に切り分けることが重要であることを学びました。 感度の良い切り口を取り入れるには? 課題の分析においては、提示された回答と異なる視点で取り組むことがありました。これは必ずしも悪いことではありませんが、今回の回答の方がより優れた切り口であるように思いました。「感度の良い切り口」を意識することが今後の分析への貴重な教訓となりました。層別分解と変数分解についても、これまでは曖昧な使い方をしていたと感じています。どちらを用いるべきかを意識することで、より効果的に分析できると考えています。 さらに、「感度の良い切り口」と「意味のある分け方」という概念は、忘れがちなものの、非常に重要であると感じました。 新たな職場での挑戦とは? 来期には新しい職に就く予定ですが、具体的なイメージはまだ掴めていません。今までの経理財務の経験を活かしながら、売上や費用の分析にロジックツリーやMECE、層別や変数での分解を活用したいと思っています。「感度の良い切り口」や「意味のある分け方」を意識しつつ、分析に取り組んでいくつもりです。 ロジックツリーやMECEを利用する際には、頭の中だけで考えず、図示することによって理解を深めたいと思います。図示した内容は資料として保存し、後からの利用やプレゼンテーション用に加工する際にも役立つでしょう。簡単な方法として、エクセルで図示を試みたり、以前使った「Xmind」というアプリを利用してロジックツリーを描いてみたりすることも考えています。これを機会に、ロジックツリーに挑戦してみようと思います。

「分析 × 結果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right