データ・アナリティクス入門

数字が導く学びの実験室

ボトルネックはどこ? データをプロセスごとに分解してボトルネックを特定すると、問題の把握が容易になります。各フェーズの転換率を算出することで、定量的にボトルネックを明らかにでき、値が異なった場合でも率に統一して比較することが可能です。また、ある仮説とその対概念にあたる仮説を併せて検証することで、思考の幅を広げ、複数の仮説を判断基準に基づいて評価し、絞り込みを行います。 A/Bテストで何が? A/Bテストでは、比較するグループ間の介入の違いをできる限り絞り込むことが求められます。これにより、広告のA/Bテストや販売実績の評価において、クリエイティブにどの要素が反映されるべきかを具体的に検討できます。施策をプロセスごとに分解し、定量的な評価を実施することで、成功要因や失敗原因を明確にし、次の改善策の立案に役立てています。

デザイン思考入門

ルールに共感、未来への一歩

研修で共感の秘訣は? 私の担当業務では、ルールや運用の新規導入や見直し、そして研修の実施といった機会が多く、いずれもデザイン思考の考え方を活用できると感じます。実際に、研修の準備過程で過去に実施したアンケートや現状の課題分析に基づきテーマを設定し、段階的にコンテンツを作成しながら上司や部門メンバーに確認を重ねるというプロセスは、デザイン思考の共感やフィードバックの重要性を再認識させました。 他部門との連携は? 一方で、ルールや運用の新規導入においては、研修と同じ手法を十分に活かせていない面があり、今後は社内の他部門の立場に立って内容を検討する意識を持ちたいと考えています。まずは、通常業務の中で他部門とのコミュニケーションを機会として捉え、相談や監査の際にさりげなく意見を聞くことで情報収集を進めていければと思います。

アカウンティング入門

損益計算書が導く全体視点

数字の背景は? 損益計算書と照らし合わせながら全体像を捉えるストーリーを構築することが大変意義深いと感じました。なぜそのような数字が出るのかという疑問を持つことで、業務の背景や要因を深く考えるきっかけとなりました。 視野を広げると? また、文章の読み取りにおいて、自分の視野が狭くなっているように感じたため、今後は全体を俯瞰しながら理解を深められるよう努めていきたいと思います。 具体的取り組みは? 具体的には、以下の点を重視して取り組んでいきます。 ① 損益計算書を確認する際、自分が実施している業務との関連性を意識しながらストーリーとして捉える。 ② 数字を読み解くのに時間がかかることを承知の上で、少しずつでも理解を進めていく。 ③ 他人事としてではなく、自分事として積極的に学びの時間を確保する.

データ・アナリティクス入門

視点を広げる根拠の解決術

原因考察と仮説検討は? 原因を考える際、問題発生までのプロセスを洗い出し、対概念などのフレームワークを用いることで、仮説検討の視点を漏れなく広げられると感じました。また、判断基準を設けた上で重み付けを行ったり、A/Bテストを実施して検証する方法も学び、具体的な打ち手の決定に役立つと感じました。 解決アプローチはどう? 業務におけるこれまでの問題解決のアプローチは、決め打ちに偏りがあり、問題点の洗い出しの視点が狭かったことや、なぜその結論に達したのかの言語化が不足していたと痛感しました。今後は、what→where→why→howのステップに沿って原因の観点を広く整理し、データを比較しながら根拠を持って仮説を立てたいと考えています。さらに、打ち手の決定に際しては、A/Bテストをうまく活用することを試みたいと思います。

アカウンティング入門

カフェで紐解く企業の価値観

企業の資金配分はどう? 授業を通じて、企業がどこに資金を注いでいるかを分析することで、その企業が大切にしている価値観を読み解く方法を学びました。特に、カフェのシチュエーションを用いた例題では、各コンセプトに重きを置く際に削るべき経費が見えてくるプロセスに非常に興味を持ちました。 学びの未来はどう? この学びを踏まえて、今後は以下の点に活かしていきたいと考えています。まず、他社の財務分析を実施する際に、どの経費に重点が置かれているかを把握し、そこから企業の基本姿勢を理解することを目指します。次に、損益計算書の構造から企業の持続性や信用性を評価し、上席や経営陣へ伝わる資料を作成できるように努めます。最後に、実務において財務三表に触れる機会が増えているため、今回学んだ内容を中心に、さらに理解を深めていきたいと思います。

データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

データ・アナリティクス入門

仮説実践!即断で未来を掴む

効果測定は本当に? A/Bテストの実施により、短期間で効果測定が可能であることを実感しました。一方、単にデータ収集に時間をかけるだけでは、必ずしも問題解決には結びつかないということが分かりました。 分析時間は適切? 業務を進める際、初めはデータ分析から始めることが多い中、分析に時間をかけすぎる傾向があると感じています。一定量のデータが得られた段階で、迅速に仮説を設定し、追加の分析が必要かどうかを判断するか、実行フェーズに移行するかを見極めることが重要だと学びました。 行動開始のタイミングは? このコースを通じて、仮説に基づき行動に移すタイミングの大切さを再認識しました。今後は、データ分析に没頭しすぎず、適宜ストップしながら、仮説思考を軸にした実践的なアプローチを心がけたいと思います。

リーダーシップ・キャリアビジョン入門

一人ひとりを光らせるリーダー術

環境とメンバーはどう支える? リーダーシップを発揮する際には、自分の型に固執するのではなく、環境要因とメンバーとの適合要因を踏まえて、臨機応変に行動を使い分けることが大切だと学びました。単に表面的なタイプだけで判断するのではなく、各メンバーがそのようなタイプになった背景や、どのような要因が影響しているのかを理解することが、適切なサポートにつながると感じています。 各自の背景をどう見る? まさに今、今年のプロジェクトではメンバーの担当割りとゴールの提示が求められる段階です。そのため、一人ひとりに合わせた行動をどのように実施するか、丁寧に考える必要を改めて実感しました。これまで、表面的な判断や年齢などで一律に見ていた自分が、今回の演習を通じて、各メンバーの背景を理解する大切さに気づかされる結果となりました。

マーケティング入門

現場で磨く!顧客視点の極意

体験で何が学べた? 自らが同じ環境に身を置くことで、真のニーズを引き出すという学びがありました。その経験から、自分が自然に心掛けていた考え方が正しいと再確認できた一方、ペインをゲインに変える視点が欠けていたことに気づかされました。 何に注力すべき? 顧客のニーズを把握するため、カスタマージャーニーを丁寧に実施し、これまで見落としていたペインポイントを洗い出すことの重要性を感じています。その上で、見つけたゲインポイントに基づいて、今後どの方向に力を注ぐべきかを提言していきたいと思います。 どのデータが鍵? また、マーケティングでは裏付けとなる指標やデータを収集し、分析を行うことが不可欠です。これらの情報をどのように効果的に収集しているのか、その方法と手法についてさらに学んでいきたいと考えています。

戦略思考入門

数字で紐解く組織改善のヒント

基本原則はどう理解? 演習を通じて、規模の経済や規模の不経済といった製造業の基本原則を改めて認識する良い機会となりました。非製造業であっても、固定費と変動費の区分を用いた損益分岐点の考え方を、組織全体にフィードバックすることが重要だと感じました。 コスト計測は正確? また、組織内の複数のビジネスにおける生産性や効率性を分析する際には、できるだけ現実的なコスト計測(固定費、変動費)を行い、経常利益段階での損益積算分析を実施する必要性を痛感しました。 改善活動に期待は? こうした分析結果を基に、組織メンバーが納得しやすく、課題を具体的に把握できる環境を整えることが理想です。その上で、改善活動を組織目標として共有するため、モチベーション向上策と連動した取り組みを進める必要があると考えています。

データ・アナリティクス入門

比較で見える回収改善のカラクリ

分析の基本は? 債権回収の分析にあたっては、「分析は比較である」「apple to apple」「生存者バイアスに気をつける」の三つのキーワードを常に意識しています。まずは、分析の目的を明確にし、全体像をビッグデータで可視化するところから始めます。 現状評価はどう? 具体的には、保有している債権全体と請求可能債権の集計を行い、過去からの変遷を比較することで現状の回収状態を評価します。その上で、改善が求められる債権セグメントを明らかにしていく方針です。 集計イメージは? まずは集計のイメージを作成します。保有債権を請求可能なものとそうでないものに分類し、細分化した内容を表にまとめます。イメージが固まったらビッグデータを活用して集計を実施し、過去からの遷移表を作成して比較しやすい状態に整えます。

データ・アナリティクス入門

実務に効くプロセス分解の秘訣

どこで分割すべき? 今週はプロセスに分けて分析する方法を学びました。Web解析の基本知識があるため、内容は理解しやすかったです。特に、Web以外の分野でプロセスに分解して分析する場合、どの段階で分割するかが非常に重要だと感じました。効果的でないプロセス分割をしてしまうと、いかに情報を分析しても課題解決に結びつく情報提供ができなくなるため、プロセスの分離設計が不可欠だと実感しました。 A/Bテストはどう? また、A/Bテストについては実施が必要だとは思いつつも、実務ではリソース不足などの理由で2パターンの検証が難しいケースが多いと感じています。そのため、実務ベースでは別の手法を模索する必要があると考えます。勉強のために、実際に行われたA/Bテストの具体的な事例があれば、ぜひ共有いただきたいです。
AIコーチング導線バナー

「実施」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right