データ・アナリティクス入門

平均だけじゃ見えない世界

平均値だけで判断? 平均値だけを見ると誤った判断をする危険性があると学びました。そこで、データの分布を詳しく分析することでばらつきを把握し、分析対象の値についていくつかの代表値を意識することで、より確かな分析が可能になると実感しました。 各地域で違いは? また、これまで地域ごとに単純なヒストグラムグラフを用いて施策の導入率を示していたところ、異なるビジュアルで各地域の分布を可視化する手法が有効であると感じました。これにより、データの違いから仮説や対策を導き出すことができ、より実践的な分析が行えると考えています。 再考してどう変える? 今後は、常に分析の方法やデータの捉え方を再考する習慣をつけ、複数の視点からデータを加工・表示する手法を試みたいと思います。また、比較を意識しながらギャップの要因を探り、そこから具体的な対策を検討していく姿勢を大切にしていきます。

クリティカルシンキング入門

データ視点で広がる分析の世界

多角的分析で気づく? データの分析には様々な視点が存在します。一つの視点でMECE(漏れなくダブりなく)の状態を達成しても満足せず、他の視点をいくつか考慮し、それらを比較することによって最も示唆に富んだ分析がどれかを確認する意識が重要であると気付きました。 決算資料の整理は? また、決算説明資料においては投資家の視点に立ち、業績の変化や注目すべき勘定科目、さらには投資家が企業の決算で知りたいことをMECEに従って整理する必要性を認識しました。企業が伝えたい内容も同様にMECEで考えることが大切だと感じました。 伝えたい内容は何? 今後は、ステークホルダーの立場ごとに伝えたいことを漏れなくダブりなく検討することから始めたいと思います。これまではなんとなく投資家や企業の目線を選んでいましたが、これからはその内容をしっかりと把握し、チーム内で議論できるよう努めます。

データ・アナリティクス入門

データが語る、私の成長ストーリー

現状はどう伝える? 私の目的は、日々KPIを達成できる体制を構築することにあります。そのため、どのように現状を正確に伝えるかが極めて重要であり、皆に心からの気づきを与え、具体的な行動を促すことで、この目的に近づけると考えています。 状況把握の秘訣は? 毎週、先週の状況を報告し、改善された点と引き続き課題である点を会議の場で共有しています。また、状況分析は、先々週との比較だけでなく、前年同時期との比較など、さまざまな視点を取り入れて工夫を重ねるよう努めています。 解決策の効果は? 課題に対する解決行動としては、実際に取り組んでいる組織へのインタビューを実施し、取り組みの効果を定量的に分析することで、対策を行った場合と行わなかった場合の効果の違いを明確にしています。加えて、どのようなデータの見せ方が皆の意識に響くのかを考え、情報の提示方法にも工夫を凝らしています。

データ・アナリティクス入門

集めて比べる、学びの第一歩

ライブ授業をどう捉える? ライブ授業を通して、分析においては「比較」が非常に重要であると改めて実感しました。限られた情報の中で考察を進めると、様々な視点が生まれる一方で、正確な回答を導き出せない場合もあることが認識できました。 データ準備の確認は? データ分析を実施する際には、まず必要なデータをしっかりと揃えることが不可欠だと学びました。新しいシステムの導入を検討する場合、価格、使用頻度、使用者の経歴、最も利用される時間帯など、複数のデータを準備し、事前に確認すべきポイントを絞り込む必要があります。 集計と比較はどうする? その上で、まずは確実にデータを集め、その後に集めたデータを比較しながら、必要な情報や懸念点を検討していくことが大切です。さらに、足りない情報がないかを意識しながら、新しいシステムに求められる要素を見極めるプロセスの重要性を再認識しました。

データ・アナリティクス入門

現場の知見!多角的視点で切り拓く未来

分析の始まりは何? データ分析は、基本的に各要素の比較から始まります。分析を行う前に目的をはっきりさせ、まず仮説を立てた上で必要なデータを収集することが重要です。一つの考えに固執するのではなく、複数の視点から検証し、さまざまな可能性を考慮することが求められます。 フレームワークは役立つ? これまで学んだフレームワークを実務に応用し、再度データ分析に取り組むことで、現状の問題点や改善策が明確になります。たとえば、株式データや取引先データを活用し、視覚化することで、より説得力のある分析と問題解決が可能となります。 必要なデータは何? また、何が問題であり何を解決すべきかという目的を常に見失わないようにすることが大切です。さらに、どのような意思決定を行うために、どんなデータが必要かを明確に考え、取得できるデータをなるべく多く把握する姿勢が求められます。

データ・アナリティクス入門

問題解決と最適化に役立つ具体的手法を学ぶ

問題解決の順序がカギ? 問題解決のプロセスについて、「What、Where、Why、How」の順に進めることの重要性を再確認しました。問題理解と適切な対策を講じるためには、なぜなぜ分析を行い、真の原因を見つけ出すことが不可欠です。このプロセスは、提案時の逸注分析やプロジェクトのトラブル、営業活動におけるクレーム対応などの場面で活用できます。 A/BテストでCROを最適化するには? また、A/BテストがWebマーケティングにおけるCRO(コンバージョン率最適化)の手法の一つとして有効であることを学びました。この手法は事業プランの策定時にも有効です。具体的には、異なる案を用意して比較し、優れた点を組み合わせてブラッシュアップしていく方法です。マーケットプランにおいても、自社案と協業先の案を出し合い、検証や補完を行うことで、より確実なプランを作成することができます。

データ・アナリティクス入門

細分化で見つけた改善のカギ

A/Bテストで何を発見? A/Bテストを活用することで、比較的簡便に効果的な解決策を見いだし、継続的な改善へとつなげられることを学びました。これからは、日々の施策検討において、課題を細かい要素に分解し、それぞれについて最適な解決策を追求していくプロセスを取り入れていきたいと考えています。 テスト計画は何が肝心? プロモーションのA/Bテスト計画を立てる際は、まず目的と仮説をはっきりとさせることが大切です。テストは1要素ずつ行い、同一期間内に実施することで、外部環境の影響を受けにくくなります。また、問題の原因を探る際には、プロセスをできる限り詳細に分解し、ボトルネックとなる部分を見極めることが求められます。 解決策評価はどうする? さらに、解決策を検討する場合は、何を基準に評価するかという判断基準を明確にした上で、各案を慎重に評価することが重要です。

データ・アナリティクス入門

目的から逸れずに効率UP!分析のコツ

目的設定はなぜ重要? 目的と比較の設定は非常に重要です。特に他者に仕事を依頼する際は、これが鍵となります。分析においても、目的に沿った意味のある係数と、そうでないものを見極める必要があります。目的によってその意味は変わり、使い方次第では係数の有無も変わってきます。 自己分析で気をつける点は? 自己分析の際も、目的からぶれないことが重要であり、目的に応じた答えや提案が含まれるインサイトを得られるかを考慮する必要があります。チームに依頼する際も同様に、彼らの仕事が意味を持つよう、効率化できるポイントを設定します。 比較時に確認すべきことは? 何が目的なのかを明確に書き出し、何をどの観点から比較したいかを考慮します。また、目的から逸れそうになったら立ち返って確認することが大切です。比較がきちんと同じ条件下で行われているかも再度確認しなければなりません。

データ・アナリティクス入門

比較が切り拓く使いこなしの未来

比較って何が重要? 分析というと、難しい数字を使った調査と思われがちですが、本質は「比較」であると学びました。比較は、目の前にあるもの同士だけでなく、目的に応じて見えていない要素も想像して行う場合があります。 活用状況はどうする? プロダクトにおける顧客の活用状況では、十分に使いこなせていないケースの課題を抽出し、もししっかり活用できた場合のシミュレーションを定量的な数値で示すことが重要です。こうして、利用促進のきっかけを提供すると同時に、プロダクト自体の改善点にも繋げられると実感しました。 目的はどう定める? また、比較対象を決める際には、分析の目的と照らし合わせながら選定することの大切さを学びました。私自身、問題が発生した時に手段に頼りがちな傾向がありますが、今後は目的を明確に定義し、しっかりと把握する意識を一層高めていきたいと思います。

データ・アナリティクス入門

数字が語る学びの軌跡

なぜ統計手法を重視? 平均値だけでは数値のばらつきを捉えきれないと実感しました。仮説を立てる際、標準偏差や中央値など多様な統計手法を併用することが大切だと改めて感じます。また、データをビジュアル化することで仮説の精度が向上し、分析のアプローチ自体も変わり得る点が印象的でした。 どう評価を改善? 今回のコンテンツ運用アンケートでは、これまで尖った意見や単一の数値に頼った評価に偏っていた部分を改善するヒントを得ました。今後は、仮説を明確に立てた上で、比較や傾向を意識した深いデータ分析を心がけていきたいと思います。 整理で何が見える? さらに、既に収集しているアンケートデータの整理を実施し、情報の過不足を確認する予定です。初めてのデータビジュアル化にも挑戦し、その結果は次回以降の運用改善のための知見として、適切な知識管理ツールで整理していきます。

データ・アナリティクス入門

どのデータを集めるかが未来を決める

比較の重要性を再考する 分析の本質は比較であることを学びました。これまで、比較対象の選定や要素の統一が不十分だったため、正確な分析ができていなかったと感じます。特に、生存者バイアスがかかってしまうことが多かったことを反省しています。 実証実験で得る結果は? 新規事業を創出する部門に所属しているため、秋から行う実証実験ではデータの適切な分析と比較対象の正確な選定を心掛け、意味のある結果を得たいと考えています。また、取得したいデータの設計も行い、目的に合った実証実験を行いたいと思います。 適切なデータ設計とは? 実証実験の目的を再確認し、成功と見なされるために必要な情報を考えます。どのようなデータを取得すればよいかを設計し、それを企画に反映させます。分析の本質は比較にあることを常に念頭に置き、適切な比較対象を設定することを意識して進めていきたいです。

データ・アナリティクス入門

小さな実験で見えた業務改善

A/B分析はどう見る? A/B分析の手法について理解が深まりました。分析時の基本として、環境要素を一致させることや、複数パターンの場合には確認したい要素を絞り込むなど、判定材料の吟味が重要であると感じました。ただし、効果や判定は比較的しやすい印象を受けています。 UI選択はどうする? 現在、課内の業務案内掲示板の改修を進めており、どちらのUIが確認しやすいか、また問い合わせ件数が減少するかを試す計画です。ただし、使用するツールが決まっているため、パターンが限定される点と、同時に開示できないジレンマを感じています。 引継ぎはどう進める? 明日から業務引き継ぎ用のマニュアル作成が始まるため、まずは小規模かつ迷惑のかからないメンバーでトライアルを実施します。迅速に変更できる体制を整えることで、双方の良い点と不得意な点の判定を容易にすることが狙いです。

「比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right