データ・アナリティクス入門

データに潜む真実を見抜く技術

視覚的要素の活用法は? 目は最高の分析ツールです。顧客へのプレゼンでは、すぐに理解できるグラフや表を用いることが重要です。特に、目の前にあるデータや事象にだけ引っ張られず、見えないものも比較対象として考慮することが肝心です。分析の着眼点としては、逆説的な発想を持ち、新たな仮説を立てられるようにすることで、重要な点を見落とさない思考を身につけることが求められます。 データ活用で成果を上げるには? 現在の業務においては、データを活用して顧客の課題解決を図っています。営業活動においても、新規顧客の案件獲得やリード獲得にデータを活用できると考えます。しかしながら、広告媒体や営業ツールの選定では、比較対象のデータがフェアに整わないことがあり、会社との相性も考慮する必要があるため、仮説の設定やデータの加工が難しいと感じています。 目的設定の重要性とは? そこで、目的をしっかりと設定することが重要です。顧客の要望をそのまま受け取るのではなく、意思決定や課題解決にどうつながるかを見極める必要があります。また、仮説の設定については、見えているデータ以外にも比較や仮説の対象となるものがないかを意識して考えることが求められます。

データ・アナリティクス入門

データ分析で実務力を即戦力に!

データ分析の基本を見直す データ分析の基本的な考え方として、「データ分析は比較である」、「データをどのように加工すると分かりやすいかを考える」、「データ分析の目的を明確化する」ことが重要であると認識しました。これまでの自身の業務を振り返り、反省しつつ、今後のデータ分析においてはこれらを忘れずに取り組むことが大切だと考えています。 どのように実績データを活用するか? グループ各店の業務実績データ(定量・定性)の分析を通じて、それぞれの店舗の課題を抽出し、傾向を把握します。そして、課題解決に向けた戦略を立案する際には、データアナリティクス分野で学んだ知識を活かしたいと思っています。 学習した知識を実務にどう活かす? この科目での学習を継続して実務に活かすためには、セミナー視聴やグループワークだけでなく、自主学習を行い、習熟度を高めていくことが必要です。そこで、平日の早朝30分から1時間、そして週末にも学習時間を確保し、理解を深めていく計画です。また、実業務においては、6週間後に学びきるまで待つのではなく、WEEK1から学んだことを即座に業務でアウトプットする意識を持ち、実践力を向上させたいと考えています。

データ・アナリティクス入門

平均を超えた数字の物語

分析の精度をどう? 普段の分析では平均値に頼ることが多いですが、データのばらつきを十分に表現できない点が印象に残りました。標準偏差はこのばらつきを把握するための指標であり、分析の精度を高めるためにぜひ取り入れるべきだと感じています。業務ではすでにビジュアル化の手法を用いていますが、今後は標準偏差も活用していきたいと考えています。 採用分析の狙いは? 採用状況の分析については、平均値だけではなく標準偏差を用いることで、応募者数や面接評価の個々のばらつきをしっかりと捉え、より詳細な傾向を分析する計画です。これにより、採用プロセスの安定性や特定の職種や部門における採用難易度の変動を明確に把握することが可能になります。その結果、より効果的な採用戦略の策定やリソース配分の最適化へとつなげることを目指しています。 計算環境はどう? 現在は、最新の採用データを整理し、Excelなどのツールを用いて標準偏差を計算できるような環境を整えています。主要な指標である応募者数や面接評価の標準偏差を算出し、比較分析を実施する予定です。こうした分析結果を視覚化して定期報告に組み込むことで、より深い洞察を得られる体制を構築していきます。

データ・アナリティクス入門

分解で納得!問題解決の実践

課題の本質を探る? 問題解決には明確な手順が必要です。まず、直面した課題を正確に言語化し、現状とのギャップを明らかにすることが求められます。そのため、分析を始める前に、課題とギャップの埋め方についてしっかりとすり合わせ、合意を得ることが重要となります。 合意のポイントは? 合意を形成するためには、問題を漏れなくダブりなく分解し、論理的かつ視覚的に納得感が得られる形で提示する必要があります。たとえば、「劇場の売上の減少」という課題認識のもと、大枠では単価と客数に分解できますが、そこからさらにMECEな形で掘り下げ、時系列比較の中で最も影響が大きい部分を特定することが効果的です。 収束はどう図る? また、予実比較の検証のように議論が発散しやすい場合でも、一定の手順に従えば納得感のあるロジックで改善箇所に合意が得やすくなります。具体的には、直近1年分の売上データを活用し、MECEな形で分解作業を行うことで、現状の売上改善余地がある領域を根拠をもって説明できるようになります。 改善策はどう決定? 最終的に、関係者の合意を得た上で、特定した改善領域に対するアクションプランを立案し、提案することが求められます。

データ・アナリティクス入門

予測に挑む!データの秘密

予測の意義は何か? グラフを見る前に予測を立てる大切さが非常に印象に残りました。自分の予測と実際のデータとの差異を意識すると、「なぜこんなギャップがあるのだろう」という疑問が自然に湧き、分析を深堀りするうえで効果的であると感じました。予測と実績を比較するアプローチは、次にどのデータを詳しく見るべきかという方向性を明確にする上でも有用です。 平均値の限界は? 従来、総量を人数で割って1人あたりの平均値を算出し、能率を評価していましたが、詳細に見るとその平均値だけではばらつきを十分に捉えられないことが分かりました。実際に細部まで分析すると、能率には大きな差異が存在していたため、平均値だけに頼るのは疑問が残ります。そこで、中央値を算出することで、平均値では見逃しがちな偏りを補完する方法を試してみようと思います。 中央値の有効性は? また、標準偏差を用いて平均値からのばらつきを把握する手法もありますが、場合によっては中央値と比較するだけで十分な情報が得られる可能性もあります。今後は、業務の能率評価において、平均値のみならず中央値の使用意義を周知し、従来の考え方から新たな視点に変えていくことが重要だと感じています。

アカウンティング入門

経年分析で見つける自社の課題

資産と負債をどう分析する? 資産と負債のそれぞれを、流動・固定という観点から見て、また純資産とのバランスが取れているかを確認したいと思います。経年でこのバランスに変化がないかを確認することで、全体の状況を把握し、その後に個々の数字を分析していきたいです。また、業界ごとのバランスの違いも確認し、それが提供価値と一致しているかを見極めることも重要です。 経年分析で何を見通せる? 自社のバランスシートを経年で分析し、現在の状況をしっかりと把握したいと思います。特に、資金の使途を理解することで、自社の経営方針における課題を見つけ出したいです。たとえば、固定資産の比率を減らすには投資計画を見直すことなど、具体的な数字に基づいて考えたいです。また、競合他社との比較を通じて浮かび上がる課題も考慮し、分析の切り口を広げたいと思います。 競合比較で見える課題とは? さらに、自社と競合他社のバランスシートを経年で比較し、傾向に違いがないかを確認したいです。我々の業界では、固定資産の割合が大きいことが特徴であるため、中期の投資計画の必要性やその経営方針との一致について論理的に説明できるよう、理解を深めたいと考えています。

データ・アナリティクス入門

アイデア発散を乗り越える思考術

ワークショップでの学びは? 問題解決のステップについては以前聞いたことがありましたが、今回のワークショップではすぐに思いつかず、アイデアが発散してしまいました。学んだフレームワークを活用して思考する習慣をつけていきたいと思います。また、MECE(Mutually Exclusive, Collectively Exhaustive)を行う際、層別分解は比較的考えやすいものの、変数分解は思いつきにくく、これについても日々練習が必要です。 コミュニケーションで注意することは? 打ち合わせでは、意見が対立したり、言いたいことがうまく伝わらず、お互いのイメージが合わないことがあります。このような場面では、MECEを用いてブレスト(ブレインストーミング)すると、目線を揃えやすくなります。したがって、コミュニケーションツールとしても積極的に活用していきたいです。 お客様との認識をどう一致させる? お客様にシステム開発の見積を提示する際、その作業内容や作業量を説明する必要があります。単なる金額の羅列ではイメージしにくいため、プロセスを分解したり、変数分解して説明することで、お客様との認識を一致させたいと思います。

データ・アナリティクス入門

数字が語る業務改善のヒミツ

データの集約ってどうやる? データの比較法について、数字を集約して捉える方法、目で見て捉える方法、そして数式を用いて集約し関係性を把握する方法を学びました。普段何気なく実施していることの意味を理解することで、さらに大きな効果を得られる必要性を感じています。 代表値と散らばりの活用法は? また、データ加工のポイントとして、代表値と散らばりの両方を活用する事例を学びました。双方の特性を活かした可視化を上手く利用できれば、より具体的な分析が可能になると実感しています。 工数計算の見直しは? 業務改善の際に、工数の計算方法が一面的であったことにも気付きました。関わる人数や各作業の分析データが欠けていたため、今後はこれらの情報収集にも注力し、ビジュアル化した際の分析範囲を広げる可能性を感じています。 収集データの過不足は? さらに、すでに収集しているデータの過不足の確認も行いました。各個人が提出する情報を一元的に抽出するツールの開発は進んでいますが、項目に不足がないか確認し、もし不足があれば機能追加を実施します。一律に集まったデータに対しては、簡単なグラフ作成を通じて作業記録などの分析を行っていく予定です。

データ・アナリティクス入門

A/Bテストの効果的な活用法を学ぶ!

問題原因の探求方法は? 問題の原因を探るためのポイントには、プロセスに分解するアプローチがあります。また、解決策を検討する際には、複数の選択肢を洗い出し、根拠を持って絞り込むことが重要です。例えば、クリック率やコンバージョン率の数値の原因を会社の戦略とそれ以外の要因(プラットフォームに起因するものなど)に分けて考えることが参考になります。 A/Bテストの効果は? A/Bテストについては、1要素ずつ比較し、なるべく同じ期間でテストを行うことが推奨されます。同じ期間で行わなければ、季節や曜日、時間といった細かい違いによって比較が難しくなります。A/Bテストは広告キャンペーンでの活用が考えられ、広告のビジュアルを変えて検証することや、掲載場所を変えてコンバージョン率を比較することで、不要な場所への広告掲示を避け、コストカットにつなげることができます。 A/Bテストを今後活用するには? 現在のところ、実際の仕事でA/Bテストを活用できる機会はありませんが、問題解決の方法として非常に効果的な検証方法であると感じています。今後、適用できる場面を見つけ出しながら、他の検証フレームワークも学んでいきたいと考えています。

アカウンティング入門

カフェで体感!PL構造の魅力

カフェで何を学んだ? 先日の授業では、別の事例紹介に続いて、カフェを例にとってPL構造の復習を行いました。 数字で何が見える? PLを理解する上で、大きな数値をもとに全体概要を把握し、各項目を比較することが重要であると実感しました。また、事業が提供する価値と照らし合わせる視点も非常に印象的でした。 シンプルな構造は? カフェという事例は、売上、原価、販管費といった要素がわかりやすく、単店舗飲食業というシンプルなビジネスモデルであるため、提供価値の違いによるPL構造の変化が理解しやすかったです。 今後の取り組みは? 今後は、以下の点に注力したいと考えています。 ① 今期の予実分析時にPL構造を再確認する。 ② 担当事業のPLについて、提供価値との整合性を再検証する。 ③ 現業界内での競合企業や、将来のターゲット市場の企業を複数社分析し、比較対照する。 業界特性はどう? また、業界ごとにPLの構造特性がある中で、業界全体の傾向から大きく逸脱する例が存在するのか、さらに提供価値とコストのバランスを評価するための普遍的なKPIがあるのかについても、今後の検証課題として気になりました。

データ・アナリティクス入門

視野が広がる!見える化の奇跡

視野はなぜ狭く? 全回のライブ授業を通じて、自分の傾向が明確になりました。経験則の範疇で物事を考えてしまうために、視野が狭くなっていることを実感するとともに、かつて学んだ内容も十分に活かしきれていないことが分かりました。 見える化に何を感じ? 授業で取り入れられていたプロセスやビジュアル化の工夫は、自分の思考の幅を広げるヒントになりました。一旦自分の発想を見える化することで、整理もしやすくなると感じました。 戦略はどこへ向か? 業務において、データ分析から戦略策定への取り組みは欠かせないため、今回の学びを活かしながら注意点を整理し、実際に見直していきたいと思います。実績データを時系列で比較するなど、どの視点に重点を置くべきか、どこまで深堀りすべきか、その必要性を常に問い直す姿勢で取り組むことが大切だと感じました。 図解は何の助け? 今後は、初期段階からのビジュアル化を心がけ、振り返りながら適切な切り口や判断基準を繰り返し検討していきたいと思います。また、これまであまり活用してこなかったグラフ化にも意識的に取り組み、仮説も含めた考察を関係者と共有し、ディスカッションへと発展させていきたいです。

データ・アナリティクス入門

実践が教える仮説検証の極意

検証手法は有効? 問題原因を明らかにし、仮説検証の手法を学びました。A/Bテストを活用して施策の比較を行い、検証条件を可能な限り統一することの重要性を実感しました。例えば、AM・PMや平日・休日といった環境の違いは、検証対象以外の要素が判断に影響を及ぼす可能性があるため、広告などではランダム表示を取り入れることで正確な評価ができると考えています。 現場実践と課題は? 業務の現場では、店舗出店など莫大な費用と時間を要するケースが多く、テスト環境の確保が難しいのが現状です。しかし、勤務状況や労務上の課題に関しては、実践の機会が得やすいため、身近な課題に対して継続的な取り組みを重ね、自身の中でフレームワークを構築していくことが重要だと思いました。 日々の計画はどう? また、仕事に限らず、収入と出費などの身近なテーマでも問題意識を持つことが大切です。まだ十分にMECEの視点で物事を分析できていないため、さまざまなケースにおける要素分析を行い、知識をストックしておく必要があると感じました。さらに、全体の時間軸を意識して日々の業務計画に落とし込むことで、突発的な対応を極力減らしていきたいと考えています。

「比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right