データ・アナリティクス入門

学びを視覚化!分析新手法の魅力

原因の仮説ってどう考える? 原因の仮説を考える際、思考の幅を最大限に広げることが重要だと実感しました。また、「問題に関係がありそうな要素」と「それ以外」という対概念を活用する考え方は、比較の観点からも非常に有用であったと感じています。講義で「分析は比較である」と最初に言われたことを思い出し、理解を深める手助けとなりました。 分析手法は何が新しい? プロセスウォーターフォールという、これまで自身で作成したことのなかった分析手法に触れることができ、今後の業務にも取り入れていきたいと考えています。業務上このような図を目にする際には、どのような観点で分析が行われているのかを意識して見るよう努めたいと思います。 視覚化で伝わるの? また、ファネル分析による絞り込みについては、これまでも暗黙的に業務で活用していた部分がありました。しかし、他者とのコミュニケーションにおいて、自分のイメージが十分に伝わっているかどうか不安に感じるため、今後はファネル分析やプロセスウォーターフォールといった手法を視覚化しながら議論を進めることを自分に推奨していきたいと思います。

アカウンティング入門

業種で読み解くB/Sの秘密

B/Sの表現はどう違う? B/S上で、業種ごとに異なる事業モデルがどのように表現されるかが非常に興味深かったです。たとえば、資産面から固定費が大きくなる事業とそうでない事業があり、経営コンセプトによって必要な資産の状態が変わるため、それに合わせた負債の設定も変わることが理解できました。 B/Sの特徴はどう見る? また、B/Sに関しては以下の点に注目して学びを深めたいと考えました。まず、業種ごとにB/Sの特徴がどのように異なるのか、大きな傾向を感じ取ること。次に、同一業種内でも企業ごとの資産、負債、純資産の構成の違いに焦点を当てること。そして、35年ほどの長期にわたるB/Sの変化の流れを把握することです。短期間、たとえば3年程度では変化が見えにくいという仮説も立てています。 財務数値はどう分析? これらは、財務関係の書籍で顕著な事例が紹介されているため、その内容を確認することで業種ごと、企業ごとの違いを概略的に理解していきたいと考えています。ある程度理解を深めたうえで、実際の財務数値を整理し比較することで、より確実な分析に繋げていきたいです。

データ・アナリティクス入門

目的明確!振り返りから学ぶ分析術

比較で何を学ぶ? 分析は、比較するところから始まります。ただ単に集計結果をまとめるだけではなく、そこから得られる示唆を示したり、グラフ化して見やすく提示することが求められます。また、分析はあくまで手段であるため、常に分析の目的に立ち返り、手段自体が目的にならないよう注意する必要があります。比較対象としては、目に見えるデータや得やすいデータだけでなく、見えにくい側面も含めて選定することが大切です。 目的設定はどうする? そのため、データをエクセルで加工する前に、まず十分な時間をかけて目的や比較対象を明確にすることが重要です。目的をはっきりさせることで、分析結果の妥当性や有用性を高めることにつながり、関係者の意見を取り入れるなどして、慎重に検討する姿勢が求められます。 何を紙に書く? また、分析を始める前に、目的、比較対象、仮説などを紙に書き出しておくとよいでしょう。作業中は都度その紙を見返し、目的から逸れないよう気をつけます。目的があいまいなまま設定されることが多いため、必要に応じて、事前にまとめた事項を見直しながら分析を進めることが効果的だと考えます。

アカウンティング入門

学びと実践で深めるP/L理解

P/L理解の重要性を考えよう P/Lの構成要素について理解が進みました。P/Lを読む際には、価値を考えることが重要です。事業のコアバリューと一貫性を持った施策を考えることで、収益性を向上させることができると感じています。これらを念頭に置き、さらに学びを深めていきたいと思います。 他社比較の必要性とは? 自社の前期の決算資料を見たところ、以前よりも理解が進みました。しかし、自社内で年数を比較しても良し悪しが見えにくいと感じました。そのため、他社と比較してみることを考えています。また、部門ごとに事業が異なり、提供している価値が違うため、部門ごとのセグメント利益が発表されてはいるものの、分野が分岐しており、自分が所属する分野単体でのP/Lは発表されていない状況です。これについても確認したいと思っています。 雑誌の参考価値は? さらに、先日紹介された雑誌を参照しようと考えています。そして、自分が所属している分野単体でのP/Lを確認し、管理している物件ごとの収支との関連性を把握したうえで、コアバリュー・一貫性のある施策を改めて整理したいと思います。

クリティカルシンキング入門

データを巧みに操る分析の旅

数字の裏に隠れた答えは? 数字の羅列にしか見えないデータでも、多角的に分解し整理することで新たな情報が得られることに気づきました。具体的には、WhenやWho、Howといったカテゴリごとにデータを洗い出し、グラフを用いて数字の変動を追ったり、最大・最小の数値や割合を比較することで、多くの学びがありました。私は特にグラフ化や関数に対して苦手意識を持っていたため、これらを克服してデータ分析の手法を身につけたいと強く感じました。 具体例で何が見える? これらの手法は、主に以下のような場面で役立つと考えています。例えば、産休・育休のデータでは、自部署だけでなく全社や日本社会全体の傾向も分析でき、マネージャー育成では、試験結果を単なる合格・不合格の線引きではなく、点数ごとの分布に注目して分析が可能です。 どう伝えれば安心する? また、上司に資料を提出する際には、以下の行動を心がけていきたいと思います。まずアウトプットのイメージを具体化し、それに必要な情報を集めます。そして、仮説を立ててそれを検証できる視点で分析し、提案先の社員目線にあったアウトプットを整えます。

データ・アナリティクス入門

データ分析の新常識!実践で学んだ秘訣

データ分析の比較とは? Week1で「分析とは比較である」と学びましたが、Week6の実践演習でその意味を実感しました。 アンケートの対象者を選定する際、データ収集後の分析においてどのような比較を行うかを念頭に置くべきだということを改めて感じました。また、分析を行う前段階で、最終的なアウトプット(例:切り口やグラフ等のビジュアル)をイメージしておくことの重要性も学びました。 収支分析のステップは? 収支分析を行う際には、常に様々な切り口を意識することが必要です。切り口を考えた後、「what→where→why→how」とステップごとに分析を進めることも重要です。その結果、確度の高い分析が可能になると感じました。 このような様々な切り口と「what→where→why→how」というステップを意識し続けることで、分析結果を効果的にアウトプットできるようになります。また、数値の性質やグラフについての理解を深めるために探求を続けることも重要です。実践を通じて学んだことを自分の活きた知識とするとともに、書籍や研修を通じてさらに知識を深化させていきたいと思います。

戦略思考入門

差別化戦略を考えるヒント

顧客の価値はどう見極める? ターゲットとなる顧客にとって、価値のあるものをしっかりと捉えることが重要です。顧客が魅力を感じなければ、その差別化は意味をなさないからです。また、顧客視点で誰が競合となり得るか、思わぬ業界や業種が競合になる可能性も考慮する必要があります。さらに、実現可能で持続可能な差別化、すなわち他社にすぐ真似されない対策を意識して差別化施策を打ち出すべきです。 営業とマーケティングはどう活かす? 営業においては、顧客が求めているものを把握し、他社の差別化ポイントを考慮しつつ、自社の差別化要素を整理することが求められます。この情報を踏まえた上で日々の営業活動や商談に取り組むことが重要です。マーケティング部門でも、新商品や新サービス・ソリューションを開発する際に、今回学んだ差別化の考え方が役立つ場面がありそうです。 自身の業務にすぐ活かすのは難しいかもしれませんが、自社の商品やサービスを考える際には、顧客にとって価値があるか、他社と比較してどうか(真似されにくいか、既に行われているか、その規模感はどうか)を常に意識する習慣をつけることが大切です。

アカウンティング入門

家庭にも役立つ「バランスシート」の発見

バランスシートの理解を深めるには? これまで社内研修などでバランスシートについて簡単な説明を受けることがありましたが、あまり理解できていませんでした。しかし、今回の学習で「右が資金の集め方、左がその使い方」とシンプルに説明してもらったおかげで、自然と理解できたことが有益でした。 家庭でのバランスシート活用法は? 私は経営部門には所属していないため、バランスシートを直接仕事で活用する機会は少ないと思います。それでも、競合企業のビジネスモデルを分析する際のツールとして使えるかもしれないと感じました。また、仕事だけでなく、自分の家庭のバランスシートを見直すのも有益かもしれないと考えました。 自己資本比率をどう比較する? まずは、自社が公開しているバランスシートを確認し、経営状況の健全性、特に自己資本比率などを他社と比較したいと思います。しかし、自社全体のバランスシートを確認しても、直接的な自分の業務とは関わらないため、自分の生活に特化して状況を把握できるよう、家庭のバランスシートを確認してみたいと考えました。

データ・アナリティクス入門

分析の力で新規事業を成功へ導く

分析とは何かを考える 今週、私が学んだ点は以下の2つです。 1つ目は、「分析とは比較すること」です。比較しなければ、その数字から何が言えるのかわからず、数字を出すだけではあまり意味がありません。 分析目的の明確化が重要 2つ目は、「分析の目的を明確にすること」です。何のためにデータ分析を行うのか、それを行うことで自分は何を成し遂げたいのかを明確にしなければ、データの整理や加工の方法もわかりません。 実証実験の進め方と意義 私の部門では新規事業開発を担当しており、日本各地で実証実験を行っています。実証目的に紐づいたデータ取得の設計と分析・評価を行い、実証結果を基に次の方向性を探る際には、数字を用いて周囲に納得感のある説明を行うことが求められます。 データ分析のスキルをどう向上させるか 現在の業務の方向性を整理し、実証実験の意義と目的を改めて明確にすることが重要です。また、データ分析を専門とする教授とディスカッションしながら実証実験のデータ取得方法を設計し、実証後のタイミングで有効なデータを用いて自身で結果を評価できるようにすることが目標です。

データ・アナリティクス入門

仮説の立て方で差がつくビジネス成果

データ比較はどう捉える? データは比較によってその価値が際立ちます。「何と比較するか」が特に重要です。仮説を立てる際には、フレームワークを活用し、網羅性を確保することが肝心です。また、仮説を切り捨てる際には、なんとなくではなく、はっきりとした理由を持って切り捨てることが必要です。 商品の見直しはどう? 売上が低迷している商品のリニューアル方針を考える際には、自社および他社の新商品や売上が好調な商品、不振な商品の販売動向や購買者の分析が求められます。特に間接競合においては、「何と比較するか」の経験的な蓄積があまりないため、これは大いに活用できる視点です。新商品のコンセプト評価が芳しくない場合には、方向転換も検討すべきです。 仮説検証の鍵は? 仮説を立てるプロセスでは、前提を疑い、フレームワークの活用や他部署からの意見を取り入れることで、網羅性を持たせることが重要です。仮説を検証する際には、比較対象を慎重に選ぶ必要があります。また、仮説を絞り込む段階では、切り捨ててよい理由を明確にしておくことが、今後同様の案件が発生した際にも活用可能な知見となります。

データ・アナリティクス入門

データ分析の新しい一歩を踏み出す

データ分析の基本とは? データ分析とは、単なる集計ではなく、比較を通じて意味を引き出すことです。具体的には、有意義なデータを比較し、仮説を立て、その仮説を検証するために、比較対象以外の条件を可能な限り一定に保ちながらABテストを実施することが求められます。 エンゲージメントを高めるためには? データ分析においては、適切な情報を選別することが重要です。例えば、SNSコンテンツのオーガニックポストのエンゲージメントデータを見ることで、どの国でどのようなコンテンツが注目されているかを理解することができます。その上で、さらに具体的に、投稿の時間帯やフレーズ、サムネの違いに焦点を当てたテストを行うことで、より効果の高い手法を見つけることが可能となります。 データの傾向を見極めるには? したがって、データの比較を深め、傾向を分析することに時間と労力を割く価値があります。決まった時間にインサイトをモニタリングし、データの傾向を知る時間を計画的に設けることが大切です。これにより、仮説を立て、有意義な投稿テストを実施することで、より深い知見を得られるでしょう。

データ・アナリティクス入門

仮説検証が開く未来への扉

原因究明の方法は? 問題の原因を探る場合、詳細に分けて確認しボトルネックを明確にすることで、問題の把握が容易になると感じました。 A/Bテストって有効? また、A/Bテストの概要とその活用方法について学ぶ中で、短期間で仮説の検証と効果測定が可能であること、さらに実際にある国の大統領選挙でも用いられていた実例から、有用性の高さを実感しました。 顧客接点をどう増やす? 担当顧客をセグメントに分け、各セグメントごとにデジタルを活用して顧客とコミュニケーションの機会を生み出す取り組みも印象的でした。例えば、メルマガ配信では、メールのタイトルや構成が開封率やクリック率にどう影響するかを比較する際に、A/Bテストが効果的に活用できそうだと感じました。 テスト後の活かし方は? 実際にA/Bテストを行う際は、1要素ずつ変更し、同一期間でのテスト実施により正確な効果測定ができるよう学んだ内容を参考に実践しています。実施後は、単にテストを終えるのではなく、振り返りの分析をしっかり行い、その結果を次回のテストに活かすことで、継続的な改善につなげています。

「比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right