データ・アナリティクス入門

仮説で読み解くデータの裏側

仮説の意義は? 今週の学習では、どんな状況においても仮説を立てることの重要性を再認識しました。仮説はデータ分析や問題解決の道しるべとなり、何を調べ、どんな情報を収集すべきかを明確に示してくれます。また、代表値だけでデータの全体像を把握するのではなく、その背後にあるばらつきにも目を向ける必要があることを学びました。平均値は全体を簡潔に表す指標ではありますが、ばらつきを加味することでデータの実情をより深く理解できるという点が印象的でした。 データ把握はどう? データの分布を視覚的に把握するためにはグラフを活用することが有効です。ヒストグラムを用いれば分布の様子が、散布図を用いれば2つのデータ間の関係性が直感的に読み取れます。また、標準偏差を理解し算出することで、データのばらつきを定量的に捉え、より正確な分析が可能になるという点も学びました。これらの学びは、特に患者の受診動向分析の現場で大いに役立つと感じています。 具体計画は? 具体的な行動計画としては、以下のステップを実施する予定です。 1. データ収集と整理  ・受診データの抽出:電子カルテシステムから必要な情報を取り出す。  ・データクリーニング:欠損値や誤りがないか確認する。  ・データ加工:分析しやすい形に整える。 2. 仮説構築と検証  ・仮説リストを作成:過去のデータや経験を踏まえ、受診動向に関する仮説を立てる。  ・データ分析:収集データを基に仮説の正否を検証する。 3. 代表値の吟味  ・複数の代表値の算出:単純な受診者数だけでなく、年齢層別、性別、居住地別に平均値や中央値、最頻値などを計算する。  ・代表値の比較:異なる代表値を比較し、データの傾向を把握する。 4. 可視化  ・グラフ作成:受診者数の推移やデータ分布をグラフで表現する。  ・グラフ分析:作成した図表から季節変動やパターンを読み解く。 5. 標準偏差の活用  ・各診療科ごとに受診者数のばらつきを標準偏差で算出する。  ・科ごとの差異を比較し、正確な分析に役立てる。 6. 分析結果の活用  ・傾向の把握:得られたデータから受診動向の傾向を明確にする。  ・対策の検討:把握した傾向を元に、より良い医療サービスを提供するための対策を議論する。  ・情報共有:分析結果や検討内容を関係部署で共有する。 7. 行動の継続と改善  ・定期的な分析:定期的な受診動向の確認により、新たな傾向や変化を捉える。  ・行動計画の見直し:状況の変化に合わせ、計画を適宜更新する。 各ステップを着実に実行することで、学んだ分析手法を実務に効果的に活かしていきたいと考えています。

データ・アナリティクス入門

データ分析を活用して目標達成!

振り返るべき分析の本質とは? ライブ授業を通して、以下の3点について再確認できました: 1. 分析の本質は比較である。 2. 問題解決の4つのステップ(What-Where-Why-How)全てにおいて仮説思考が重要である。 3. やみくもに注意! データ分析における重要ポイント データ分析において覚えておきたいポイントは以下の通りです: まず、何のために分析するのかという「目的(問い)」を押さえ、その問いに対して「仮説(ストーリー)」を立て、その上で「データ収集」をし、分析を通して「仮説検証」を行うことが重要です。データ収集方法は既存のものを「リサーチ」、新たに必要なデータは「見る」「聞く」「行う」で収集します。 次に、分析の際に必要な視点として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」があり、アプローチ方法として「グラフ」「数字」「数式」があります。 さらに、比較の前提となる"複数"と"網羅性"を担保するためにフレームワークを利用することが有効です。 長期的な目標設定の方法は? 以上を踏まえ、データ分析をハイサイクルで繰り返すことで、客観性と納得性が高い本質的な課題解決や新しい目標設定が可能となることが分かりました。 また、GAiLを通して「ありたい姿(現時点での目指す方向)」をあらためて描くことで、自分の目標が職場だけでなく、公私に共通するものであると気づきました。ありたい姿を実現するには、「ゴールを設定する」「やることとやらないことを決める」「整合を取る」ところでデータ分析を活用したいと思います。そして、公私において必要となるコンセプチュアル・スキルとヒューマン・スキルの一つであるコーチング力に注力し、ビジネス・フレームワークを身に付けていくことで、中期事業計画の策定で高度な専門性を持つことを目指します。 即断即決の精度を上げるには? 中期事業計画の策定に向けて関係者と共に戦略を自らのものとして進めるために、ビジネスの定石・フレームワークを活かしつつ客観性と納得性を担保し、最後にはこれまで培った集合知を総動員した発想の飛躍に挑戦したいと思います。 経験と勘による即断即決が多くなっていることに気づきますが、それに頼らずビジネス・フレームワークとコンセプチュアル・スキルを用いて自ら検証することの重要性も感じています。即断即決する前に深く考える時間を持ち、その考えをメモに書き出してデータ分析をもとに検証する習慣をつけたいと思います。これからも即断即決が必要な場面はありますが、その精度を上げ、発想の飛躍ができるために、視座を高く持ち、視野を広くもって先輩や上司、仲間と共に高め合える関係を継続していきたいと考えています。

データ・アナリティクス入門

振り返りで気づいた仮説の力

仮説とは何か? 仮説とは、ある論点に対する仮の答え、もしくは分からない事に対する仮の答えを指します。仮説には主に「結論の仮説」と「問題解決の仮説」があります。結論の仮説はある論点に対する仮の答えであり、問題解決の仮説は問題解決のプロセスに沿ったものです。この場合、What(何が問題か)、Where(どこで問題が発生しているか)、Why(なぜ問題が起きているのか)、How(どう解決するのか)の観点で考えます。 仮説を持つことの価値とは? 仮説で考えることの意義は以下の通りです。 1. **検証マインドの向上と高まる説得力**: 仮説を持つことは検証作業とセットで動くことを意味します。 2. **関心・問題意識の向上**: 関心や問題意識のないところには仮説は生まれません。日頃から自分の仕事に関連して仮説をもつように心がけることが重要です。 3. **スピードアップ**: まず自分なりにあらゆる情報を総動員してこれがいいのではないかと仮説を持ち、テスト的に実施しながら検証する手順を踏むことで、スピーディに対応できます。 4. **行動の精度向上**: 仮説検証のサイクルを早く回すことで、それに伴う行動の精度が向上します。 データ収集の重要性 原因の仮説を立てる際には、仮説を検証するためのデータを集めます。データには既存のデータと新しいデータがあります。既存のデータとしては、自社内にあるデータ、一般公開されているデータ、パートナー企業が取得しているデータなどがあります。新しいデータとしてはアンケート(広くデータを収集)、インタビュー(狭い範囲で深く収集)があり、追加で調査が必要な箇所に絞り、新たなデータを取ることが重要です。 仮説を立てる際の注意点は? 複数の仮説を立てる際には、以下の点に注意します。 - **仮説同士に網羅性をもたせる**: 何を比較の指標とするか意図的に選択し、何を見ればよいのか、何と比較したらいいのか意図をもって考えます。 - **データ収集する際の注意点**: 誰に聞くか(意味のある対象から聞けているか)、どのように聞くか(比較するためのデータ収集を忘れない。反論を排除する情報にまで踏み込めているか)に注意します。 フレームワーク活用のすすめ 仮説を考える際には、3C(市場・顧客、競合、自社)や4P(商品、価格、場所、プロモーション)のフレームワークを活用します。また、仮説検証のスピードを上げ、仮説検証のサイクルを早く回すことも重要です。 仮説の立て方が分からない方には、仮説を考える意義や、日頃から自分の仕事に関連して仮説を持つように心がけることが有効です。

データ・アナリティクス入門

正しい思考で磨く自分の軌跡

正しい思考は何? 沢山のフレームワークが出てきましたが、本質は正しい考え方や思考方法を知り、学び、定着させることだと感じました。習得するためには継続的な取り組みが必要で、これまでノートにまとめたメモを見返しつつ、改めてここに整理してみました。 仮説をどう作る? 【仮説の構築】 まず、問題を明確にする(What)、問題箇所を特定する(Where)、原因を追求する(Why)、そして解決策を立てる(How)のプロセスを大切にしています。仮説を立てる際には、複数の可能性を網羅し、一つに決め打ちしないことを意識しています。 また、取り巻く環境を3C(Customer:市場や顧客、Competitor:競合、Company:自社)の視点で考え、自社の状況は4P(Product:製品、Price:価格、Place:場所、Promotion:販促手法)で検討することで、より具体的な分析が可能になります。 情報の取り方は? 【データ収集】 既存のデータや一般に公開されている情報、パートナーの所持するデータを確認することから始め、さらにアンケートやインタビューなどで新たに情報を集める取り組みを行っています。誰に、どのように情報を収集するか、また比較できるデータを忘れずに取る点が重要だと意識しています。 どう考えを広げる? 【仮説思考】 仮説とは、ある論点に対する一時的な答えです。結論や問題解決のための仮説を、知識を広げ多角的な視点から検討することで、説得力と行動の精度を高めることができます。思考実験や「なぜ?」を繰り返すなど、ロジックツリーを活用しながら多様な仮説を生み出し、常に発想を広げる努力が求められます。 仮説はどう検証? 【仮説の検証】 仮説と検証はセットで考え、投資額や巻き込む人数、不確実性といった観点から必要な検証レベルを見極めます。初期段階で枠組みを設定し、定量・定性のデータを収集・分析することで、より客観性のある仮説の肉付けや再構築を行うようにしています。 市場をどう見る? 【マーケティング・ミックスとその他の分析手法】 製品戦略、価格、流通、プロモーションのそれぞれの側面を4Pで検証することに加え、5Aカスタマージャーニーを活用して現代の顧客行動を捉えています。また、クロス集計分析を通して、全体の傾向や特徴、特異点を把握し、次の打ち手を考えるための洞察を得ることも重視しています。 実行にどう生かす? 最終的には、これらのフレームワークや手法を日常的に活用することで、検証マインドを鍛え、チーム全体に浸透させる意識を持つことが、戦略の立案や実行に大きく寄与すると実感しました。

データ・アナリティクス入門

データ分析の失敗談から学ぶ成功法

データ分析における意思決定とは? ビジネスにおける意思決定において、データ分析は非常に重要な役割を果たします。数値を可視化することで先入観にとらわれずに合理的な判断が可能となります。また、比較の際には、条件を揃えた上での分析が重要です。目的を明確にすることで、何を明らかにしたいのかという背景を理解し、分析の効果を最大化することができます。 失敗をどう教訓に活かすか? 日々の業務ではこれらの点を意識してデータ分析を行っているつもりでしたが、振り返ってみるとできていないことも多く、過去には目的を明確にしないまま分析に臨んだ結果、時間を無駄にして失敗に終わった経験もあります。しかし、この失敗を教訓に、分析の依頼者に対して背景や目的を確認することで、効率的なデータ抽出と適切な要因分析ができ、最終的には施策の成功に貢献することができました。この経験を通じて、分析の初期段階で目的を明確にすることの重要性を再認識しました。 今後の分析に向けた意識改革 現在の分析経験はまだ少ないと感じており、依頼されたものだけでなく自ら事業の課題に対してデータ分析を行い、積極的に提案していきたいと考えています。ウェブサイトの行動履歴ログを基にした流入、離脱、コンバージョンの分析を通じて、カスタマーの動きを把握し、学んだ知識を活かす場面は増えそうです。 依頼者とのコミュニケーションの重要性 過去には依頼者とのコミュニケーション不足で目的が不明確なまま進め、失敗した経験もありました。今後は、何を明らかにするための分析なのかを明確にし、依頼者と密にコミュニケーションを図ることで認識のすり合わせを心掛けます。また、データ抽出の間違いで時間を無駄にした経験から、目的達成のために必要な情報を収集し続ける努力を欠かさないようにします。さらに、分析結果を言語化する際には、簡潔かつ構造的にまとめることを目指します。 スキルの向上と今後の展望 これからは、データ分析に必要な情報を依頼者とのコミュニケーションを通じて収集し、過去の失敗や学んだ知識を活かして、目的の明確化、仮説の設定、納期、データ抽出の定義など、依頼者とすり合わせを行い、認識の齟齬をなくすよう努めます。依頼者が求める分析の目的を見失わないように、すり合わせた内容を基にして、全体像を把握するデータ抽出から始めるつもりです。分析結果は言語化し、依頼者と密にコミュニケーションをとり、振り返りを行います。 学んだ知識をもとに行動を重ね、情報収集やデータ抽出方法のツール、プログラムの習得などのスキルを磨きつつ、事業の課題に対して正確なデータ分析レポートを提供できるよう努力を続けていきます。

アカウンティング入門

数字が映す企業戦略の秘密

企業戦略は何が鍵? 今週の学習で印象に残ったのは、企業のビジネスモデルや戦略がP/LやB/Sといった財務諸表に如実に表れるという点です。これまで財務諸表は経理や専門職が扱うものと考えていましたが、複数社の比較を通じ、数字が企業の意思決定や事業構造を映し出す鏡の役割を果たしていることに気づかされました。 軽やかな利益構造は? たとえば、ある企業はシステム提供型のスケーラブルなビジネスを展開し、インフラや開発費に重きを置いた軽やかなコスト構造を持つため、売上原価比率が低く抑えられています。一方、別の企業は自社でコンテンツを制作・調達することで競争優位を築いており、その結果、売上原価の比率が高く、P/Lから企業が何に価値を置いているかが読み取れました。 資産構成はどう映る? また、B/Sの観点から資産構成を比較すると、ある企業は高額な有形固定資産を多く保有し、長期安定運航を支える重厚な資産構成であるのに対し、別の企業は現金・在庫・システム関連など流動性の高い資産が中心で、柔軟な運営体制を実現していることが数字に表れていました。 数字は何を語る? このように、数字を通して「企業の戦い方」や「どこに強みを置いているか」を読み解ける点は、今までにない気づきでした。アカウンティングがビジネスの理解に直結する力を持つことを実感できた1週間でした。 業務改善の視点は? さらに、B/Sからビジネス構造や戦略を読み取る視点は、社内業務の棚卸しや改善提案の場面で大いに活用できると感じています。従来、請求や検収、支払などの処理業務の改善優先度は、作業量や負荷感といった感覚的な基準で検討していましたが、今後は資産の流動性・固定性に着目することで、業務が財務面に与える影響や重要性をより定量的に把握できると考えています。 改善提案はどう進む? 実際、月次業務の改善会議では、部門ごとに資産の動きや処理負担を整理し、改善優先度を明確に提案する機会が増えると予想しています。また、経理AIサービスの開発支援に携わる中で、各業種の資産構成に応じたレポートやアラート設計を、財務的視点から企画チームに提案するシーンも想定しています。 具体策で未来を問う? そのための具体的アクションとしては、まず自社の主要業務に関わる資産・負債の構造を部門ごとに可視化するマッピング資料を作成します。そして、現場担当者との対話を重ねながら、「この業務がどの財務項目と関係しているか」「流動性の高い資産を扱う業務はどこか」といった視点を共有し、B/Sの構造を共通の改善指標として浸透させていきたいと考えています。

アカウンティング入門

貸借対照表で読み解く経営の真実

B/Sから何が見える? 今週の学びで印象に残ったのは、貸借対照表(B/S)から事業の特性や投資の方向性、さらには財務的な健全性まで読み取れるという発見でした。これまでは「資産=持っているもの」「負債=借りているもの」といった基本的な理解にとどまっていましたが、学習を通じて企業の戦略や経営リスクについてのヒントがB/Sに隠されていることに気づかされました。たとえば、ある業種では固定資産の比率が高く、設備投資に多額の資金を投入しているケースがある一方、流動資産中心の業態では短期の運転資金や在庫を活用して利益を生み出しているという違いが見受けられました。また、固定資産が多い企業は減価償却や資金回収の期間も長くなるため、経営の柔軟性や財務リスクに影響が出るという点も興味深かったです。 人事とB/Sの関係は? 私自身は人事・労務を担当しており、直接経理に関わっているわけではありませんが、経営層からの問いや人員計画の検討の際、財務指標の読み方が重要な局面が増えてきています。かつては「なぜ採用や教育研修に予算があまり回らないのか」といった疑問を抱くこともありましたが、今回の学びを経て、固定資産が大きい企業では人的投資に回す余力が限られる可能性があると理解するようになりました。 予算配分はどうする? 今後は、管理職会議などで予算配分や人件費に関して議論する際、B/Sを活用して企業の財務構造を確認しながら「このフェーズでは内部留保を厚くすべきか」「流動資産が充実しているため柔軟な投資判断が可能なのか」といった具体的な根拠を示せる発言ができるよう努めたいと考えています。そのためには、まず自社のB/Sを定期的に見直し、資産・負債構成の変化を把握する習慣をつけることが大切だと感じています。また、他社のIR資料や有価証券報告書も参照し、業界ごとの特徴や差異を比較することで、「財務を見る目」をさらに養いたいと思います。 無形資産はどう理解? 一方で、B/Sにおける無形資産、特に人的資本やブランド力の扱いが定量化されにくい点には疑問を感じています。人的投資が企業価値にどのような影響を与えているのか、そしてそれをB/S上でどう読み取るべきかについては、他の受講生の意見も聞きながら議論を深めていきたいと考えています。また、「資産効率の良い会社」と「資産を多く保有する会社」のそれぞれの長所や短所について、特に中小企業においては「持たざる経営」と「資産保有の安心感」のどちらが経営に有利なのかという視点からも考察を進めていきたいと思います。

戦略思考入門

舞台裏に見る学びの秘密

費用構造を理解した? 固定費と変動費の構造や稼働率の関連性を実践演習を通して学んだ結果、単に生産数量を増やすだけではなく、費用の内訳をしっかり理解する必要性を実感しました。また、物事を一面的に捉えるだけでは、意図しない逆効果が生じる可能性があるため、多角的な視点で根本的な原因を見極める重要性も学びました。 経験曲線を再考する? 経験曲線の傾きは業界ごとだけでなく、企業ごとにも異なるという点が非常に興味深かったです。日々の業務に対する姿勢や改善への取り組みが習熟効果に大きく影響するため、ルーチンワークであっても常に意識して改善策を考える必要性を改めて感じました。 異動で何を得た? また、異動などで新たな業務に取り組む中で、これまでに培った知識や人とのつながりが大きな力になることを実感しました。これにより、知らず知らずのうちに範囲の経済性を体験し、実践していることに気づく機会となりました。 技術の視点は新しい? ハードウェア開発を主な業務とする中で、ソフトウェアが短期間で爆発的に普及するというコンセプトは全く新鮮でした。これまで、ソフトウェアはハードウェアの性能を最大限に引き出す役割と捉えていましたが、今後はハードウェアの役割についても新たな視点で検討していく必要性を感じています。 規模経済をどう考える? 自社の自動車製造においては、規模の経済性を活用することで現行の価格が実現されていることを再認識しました。多品種少量生産であっても、生産負荷や作業工数、生産設備の平準化に注力しなければ、規模の経済の恩恵を受けることは難しいと考えます。そのため、製造工程における設計や仕様の選定を意識して、今後の開発や運用に活かしていきたいと思います。さらに、新技術の研究開発においては、製造面での規模の経済、研究開発面での範囲の経済の両方を検討し、また市場参入後には習熟効果の向上に向けたノウハウの蓄積と改善策の実施も併せて進める予定です。 最適なバランスは? 規模の経済を正しく活用するためには、単に生産数量を増やすことだけでなく、製法や調達方法などあらゆる要素に目を向け、最適なバランスを追求することが重要です。さらに、既存のノウハウを活かしながら、異なる分野の常識と自社の常識とを比較検討することで、一見非常識に思える中に有望なアイディアが隠れている可能性もあります。今後は、こうした多角的な視点をグループメンバーとのディスカッションの中で共有し、改善策の議題として積極的に取り上げていきたいと考えています。

リーダーシップ・キャリアビジョン入門

日常対話で築く信頼の成長

チーム運営の基礎は? 日常的なコミュニケーションの積み重ねが、チーム運営の基礎であり極めて重要であるということを改めて実感しました。 新たな視点は? WEEK1で描いたリーダー像と比較して、いくつかの新たな視点を得ました。まず、従来はチーム内での最適行動に重点を置いていましたが、外部環境や経営視点を理解し、自分のチームの役割や方向性とどうつなげるかが重要であると気づきました。次に、これまでもコミュニケーションの大切さは認識していたものの、日々の対話がチーム運営の土台であることを再確認し、メンバー一人ひとりの性格やモチベーションの源泉を理解した上で信頼関係を築く必要性を強く感じるようになりました。また、個人の成長とチームの成果を別々に捉えがちでしたが、メンバーの成長がチーム全体の成果に直結しているという因果関係にも気づきました。 方針と現状の関係は? これらの気づきを踏まえ、まずはグループミーティングやプロジェクトの進捗会議といったフォーマルな場面で、チームの動きや判断が会社全体の方針や現状とどのように関係しているかを意識的に共有していきたいと思います。 信頼感はどう築く? また、日常的な雑談や軽い声かけにも積極的に取り組み、各メンバーのモチベーションの源泉や価値観を理解する努力を続けます。その上で、一人ひとりと信頼関係を築くことを大切にしていきたいと考えています。 成長支援の視点は? さらに、日々の業務の中で「この人がさらに成長するために何が必要か」という視点を持ち続け、適切なタイミングでフィードバックを行うことで、メンバーの成長がチーム全体の成果につながるよう、納得感のある成長支援を実践していきたいです。 意識共有の方法は? 具体的には、決算発表などの節目に合わせて自身の考えや方針を言語化し、整理した上でチームと共有することを習慣化します。これにより、チーム全体として会社の方向性に沿った行動ができるよう意識づけを行います。 毎日会話の重要性は? さらに、現状、全員と毎日十分に話す機会が持てていないため、1日1回は全員と雑談も含めた会話を行うことを意識します。特に若手メンバーに対しては、メンタルケアの面も考慮して実践していきたいです。 定期振り返りは何? 最後に、チームメンバー一人ひとりの近況や変化を定期的に振り返る時間を設け、もし何も思い浮かばない場合は、日々のコミュニケーションが十分でないサインと捉え、関わり方を見直すようにしていきたいと考えています。

データ・アナリティクス入門

データ分析の真髄に迫る学びの旅

データ分析の基本とは? まず初めに、データ分析の大前提として「データは分析し結論を導き出すための情報・数値であること」と「分析の本質は比較であること」が言語化されていたことが印象的でした。これにより、分析の目的や方法を再認識することができました。 目的を見失わないためには? 分析の目的を見失わないこと、目的を果たすために適切な仮説を立てることは重要です。しかし、実際には想定結果が出ず、焦ってデータ収集をやり直すことや、仮説が間違っていて最初からやり直すことが多々ありました。これは、深く考えることが不足しているからだと改めて気づきました。 効果的な比較対象の選定法 また、比較の対象を選定する際、分析する要素以外の条件を揃えることができていなかったように思います。さらに、分析結果をもとに意思決定を行うためには、どのようなデータをどう加工すると伝わりやすいかを理解することも欠かせません。データの種類に応じた加工法やグラフの見せ方ができていないケースが多く、自己満足に陥っていたと感じました。 第三者の知識をどう活かす? これからは、まず自らしっかり考え、第三者の知識や知見・知恵を借り、フィードバックを活かすことが重要であると再認識しました。 次期中期計画にどう活かす? 次期中期事業計画の策定時には、現状を振り返り、次期中期計画を「なぜその目標を設定するのか」「なぜそれを独自性(強み)と仮定したのか」「なぜそれをやる/やらないと仮定したのか」「現経営資源を踏まえた場合、なぜその方針が妥当なのか」と問うことで、分析結果を用いて説得力を持たせたいと考えています。「目指すべき目標を明確にする」「独自性(強み)を持ち自覚する」「やることとやらないことを峻別する」「目標までの道のりの妥当性を示す」これらを一つずつ丁寧に進めていくつもりです。 ゴールをどう明確にする? バランススコアカードを用いて現在の中期計画の問題点を再考し、新たなビジョンと戦略を立てるためにゴールを明確にし、その達成策を明示します。戦略マップを作り、戦略の構造化を図ることで、分かりやすいアクションプランを立てたいと考えます。データ分析に基づくことで、より良い意思決定ができると信じています。 初めての取り組みに挑むには? 初めての取り組みが多いですが、「自ら深く考える」「第三者の知識や知見・知恵を借りる」「フィードバックを活かす」ことを繰り返し、関係者全員にとって有益な中期計画にしていきたいと考えています。

データ・アナリティクス入門

ビジネス分析で得た新たな気づきと学び

分析はどう進める? 演習を通じて、実際のビジネスにおける分析思考を実践することができました。目的を明確にした分析や比較対象の明示、仮説を網羅的に洗い出し、可能性の高いものを検証していくプロセスを学びました。また、数値のばらつきを意識し、代表値に惑わされず、データの適切な見せ方についても考えることができました。 割合の見方は? 実数と割合の両方を把握することの重要性を理解しました。変化が現れる割合の内訳や、それが分析に値するかどうかを見極めることが求められますが、そこに対応が不十分な点に気付きました。無視してもよい場合は早めに切り捨てることで、分析の効率化につながることを学びました。 実績はどう比べる? 実績を比較する際には、既存データの見え方に惑わされないようにし、元データをしっかり把握することが重要です。逆に社内での説明時には、平均や代表値を用いつつ、その根拠となるデータもグラフで示し、データの精度を納得させるように努めたいと思います。平均、中央値、最頻値のどれを用いるか、慎重に考える必要があります。 不要データは除く? 効率化のために、不要な情報を最初に除外する判断が求められます。データの予測精度を上げるために複数の方法を試し、正確性に欠けるものを排除することが必要です。具体的には、当年実績予測を立てる際に、どの予測方法を採用するかを検討します。いくつかの手法を出し、例年の傾向を踏まえて選ぶといった作業が重要です。 課題は何でしょう? 分析における「比較」「目的」「課題」を明確にし続けることが重要であり、学びやインプットの時間を意識的に捻出することを続けたいと思います。特にExcelの実践スキルを高めることが課題であり、データ分析の本質や考え方についての理解を深めることができましたが、実践がまだ不足しています。業務の中でも学びの時間を作り、スキルを磨いていかなければなりません。 効率はどう上げる? データ分析を行う中で、「もっと効率的に行う方法や関数があるだろう」と感じながらも、業務の中では時間がとれないことがあります。学びの時間を構築し、最初は大変でも一度挑戦することが重要です。それを繰り返すことで、最終的な作業の効率化や精度の向上につながります。 多角的視点は? 最後のライブ講義で提示されたクリティカルシンキングのポイントを忘れずに意識しておきたいと思います。多面的に考えることを意識し、様々な人と話し、インプットを続けることが大切です。

データ・アナリティクス入門

データ分析が変えるビジネスの未来

分析を成功させるためには? ライブ授業を通して、次の3点を改めて整理できました。 まず、分析は比較によって成り立つということです。目的とアウトプットを明確にしてから分析に取り組むことで、闇雲な作業を避けることができます。 問題解決のステップをどう活用する? 次に、問題解決のステップ(What-Where-Why-How)の重要性についてです。当日の演習を通じて、これを実際に活用するイメージがつかめました。各ステップでは、目的を明確にし、ロジックツリーの活用や仮説設定、データ収集方法、データの見せ方などのポイントを整理しました。 データ分析から得た新たな発見とは? 最後に、分析のステップとして、検証したいことを具体的にし、仮説を立て、何と比較するかを意識しながらデータを集め、加工してビジュアル化することで、新たな発見が得られることを再確認しました。 また、データ分析の活用については以下の3点が挙げられます。 1. 企画立案時のマーケティングプロセスにおけるデータ活用 現状では、企画立案が現場の勘や経験に偏りがちですが、データを用いることで、より良い意思決定や施策運営につなげたいと考えています。さらに、他の施策との比較や過去のデータ分析を通じて課題点を洗い出し、マーケティングプロセスを改善していきます。 2. 施策振り返り時の検証 施策を振り返る際には、実績に対する問題や課題を明確にし、次の意思決定のために仮説を立てて検証することが重要です。 3. 課題解決に向けた活用 具体的な課題が提示されたときは、問題解決のステップと仮説検証の考え方を用いて取り組んでいきます。 学習方法の見直しがもたらした効果 これらの活用方法を通じて、アウトプットを進めていきたいと考えています。 さらに、本講座の復習をしっかり行い、学んだことを言語化しアウトプットできるようにし、問題解決ステップや仮説思考、フレームワークを実務に取り入れて練習します。自然に使いこなせるようになることを目指します。また、周辺知識の学習も継続的に進めていきます。データ活用にはクリティカルシンキングや伝える力、マーケティングに関する知識が必要で、今回自分に合った学習方法が見えたのも大きな収穫です。 今年度の目標達成に向けた取り組み 今年度は、施策の乱立を防ぎ、効率的な施策運営のために可視化データを作成し、リソースを他の業務に割けるようにしていきたいと思います。そして、掲げた目標に向けて努力を続けます。

「比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right