データ・アナリティクス入門

数字が照らす学びの道

どうやって特徴を捉える? 大量データを比較する方法として、まずデータの特徴をひとつの数字に集約し、グラフ化して視覚的に把握する手法を学びました。これにより、数値としての評価だけでなく、データの散らばりや傾向も同時に捉えることが可能になります。 平均値の違いを知る? 平均値や中央値を確認するために、単純平均、加重平均、幾何平均、そして中央値の各手法を比較しました。今まで単純平均や加重平均を主に用いていたため、このうち幾何平均と中央値の手順が分かっていなかったために、業務上物足りなさを感じていた点に気づくことができました。 分布の形はどう判断? また、データの平均的な分布をグラフ化することで、これまで感覚的に捉えていたデータの散らばりを、標準偏差などの具体的な数字として表現する必要性を認識しました。こうした数値化は、データのばらつきが大きいのか小さいのかを明確に捉える上で非常に有効です。 利用状況をどう見る? さらに、提供しているサービスの利用状況を単なる数の集計として週次報告している現状に対して、まだ活用できていないデータの中に、利用者の属性や利用時間帯などの詳細な情報が含まれているのではないかと考えるようになりました。これらを分析することで、サービスの改善点や利用者の利便性向上につながる提案が可能になると感じています。同様に、ライセンスやクラウドの予算についても、感覚的な予測に頼らずデータに基づいた数値をフィードバックすることで、より説得力のある結果に結びつくと考えています。 予測結果は合致? また、1年前に作成した将来のクラウド利用予測と現状を比較するタイミングを迎えたことから、その分析を活用し、利用していなかったデータも含めてさらに掘り下げていこうと考えています。あわせて、学習用の動画を見直すことで、自分自身の理解をより一層深める予定です。

データ・アナリティクス入門

問題の原因をデータ分析で解明!

問題の原因をどう探る? 問題の原因を探るためには、データを確認しながら原因を突き止めることが重要です。問題の原因を明らかにするために、プロセスを分散して問題箇所を絞り込み、原因の仮説を立てるのが効果的です。問題がある場合、その結果には必ずその流れがあり、その流れを押さえることで、プロセスのどの段階に問題があるのかを特定できます。 解決策の検討はどう進める? 解決策を検討する際は、複数の選択肢を洗い出し、根拠を持って絞り込むことが求められます。ステップを踏んでデータを分析し、問題解決の精度を高めることと、仮説を試しながらデータを収集し、より良い問題解決に繋げることは、両者のアプローチを組み合わせることが効果的です。まず手始めに身の回りのデータを分析すること、分析の練習を積み重ねること、そしてどんな分析計画を立てるかシミュレーションし、どんな情報を誰から収集するのか、データはどんな形で収集すればよいかを考えることが大切です。 シンプルで低コストなA/Bテストの利点 A/Bテストは、AとBの施策を比較するシンプルなテストです。運用や判断がしやすく、低コストで少ない工数で実施できるため、リスクが少ない。A/Bテストを行う際には、目的や仮説をしっかりと明確にし、有効なデータが集まるまで実施します。ただし、複数の要素をテストしたい場合には別の手法を検討すべきです。また、パターンは同時に同じ期間行うことが必要です。 データ分析の第一歩は何から始める? 解決策を考えるときには、必ず複数の選択肢を検討し、「ステップを踏んでのデータ分析」と「仮説を試しながらのデータ収集」の両輪で分析を行うことが効果的です。分析が苦手な方には、まず身の回りのデータを分析すること、分析の練習を積み重ねること、そして問題にはそこに至るまでの流れがあることを意識することをお勧めします。

データ・アナリティクス入門

データ分析の要点と活用法を深堀りするコツ

Week6での気付きは? Week1から学んでいたことが、ようやくWeek6で腑に落ちた感じがしました。 仮説思考の重要性とは? ライブ事業では、ストーリーを立てて分析する方法を具体的に学びながら復習することができました。 よい分析のためには「仮説思考」が重要です。まず目的を明確にし、問いに対する仮説を立てます(例:打率ではなく失塁率が高い選手が原因ではないか)。次にデータを収集し、その仮説をデータで検証します。仮説がデータにより証明されなければ、新たな仮説を立て直します。 データ収集はどう進める? データ収集の手段としては、検索エンジンや公開データ、アンケートやABテストなどがあります。 分析を進める際の5つの視点として、以下の点が重要です: - インパクト:影響度の大きさ - ギャップ:何がどのように違うのか - トレンド:時間的な変化の傾向 - ばらつき:分布に隔たりがあるか - パターン:法則性があるか WEBマーケティング分析のポイント グラフ化のステップとしては、まず仮説やメッセージを明確にし、比較対象を決めて、適切なグラフを選びます。 WEBマーケティングの売上に繋がりやすい顧客の分析には、以下の点を考慮していきます: - 企業規模や購入製品群(リピート購入か、多種製品群を購入しているかなど) - 地域による差異 - 製品の月別の差異 - 顧客情報の獲得経路の有効性 これらをMECEに分解し、先入観を避けつつ仮説検証を進めます。 来月以降、少し余裕ができるので、上記の分析を進め、WEBサイトの改善を図ります。ロジックツリーの活用で細かく分解しつつも、Week6の講義にあったとおり、目的に必要な分析範囲を見極めたいと思います。また、メンバーに説得力のあるプロセスを踏み、説明することも重視したいと思います。

マーケティング入門

顧客を惹きつける表現の極意を学ぶ

商品魅力はどう伝える? 今週は「どう魅せるか」を考えることに集中した1週間でした。顧客に正しく商品の魅力を伝えるためには、その商品に対するイメージやメリットを理解し、効果的に伝えることの重要性を学びました。具体的には、ある商品の名称変更に伴うヒットの事例から、「はまる」表現の力を知ることができました。 普及要件はどう理解? さらに、新しい商品が普及するために重要な5つの要素、イノベーションの普及要件についても学ぶ機会を得ました。私の仕事では、新たな金融商品に関するサービスを開発する場面があるため、試用可能性などは今後の仕事に活かせる重要な視点となりました。 差別化の罠、どう防ぐ? 顧客を見ているつもりでも、つい競合他社との比較にばかり注目し、差別化を意識するあまり、肝心の顧客の気持ちから遠ざかってしまう「差別化の罠」についても理解が深まりました。これは、特に社内でよく起こることであり、慎重に対応する必要があると感じています。 普及のポイントは? 特にセキュリティトークンなどの普及していない金融商品サービスを開発する際には、イノベーションの普及要件が有効な指針となるでしょう。現在、同じ部署内で開発中のサービスはリリース直後で、提供予定の企業から機能のヒアリングを行いながらロードマップを作成しています。ただ、意見をそのまま取り入れようとする傾向があるため、それで大丈夫なのかとPdMに確認したいです。 実践にどう繋げる? 今週の学びが直接的に私の仕事に活かせる場面を具体的にイメージするのは難しいですが、自社プロダクトの開発チームと積極的に対話をしてみたいと思います。また、ナノ単科修了までに金融教育系のサービス企画書を完成させたいと考えており、その際に顧客が抱くイメージを設定し、サービス名(仮称)を検討したいと考えています。

マーケティング入門

五つの視点が導く革新の道

学んだ視点は何? 「イノベーションの普及要因」で学んだ5つの視点は、アイデアや技術を広める際の評価軸として非常に参考になりました。具体的には、従来の手法に対する優位性を示す【比較優位】、大きな生活変化を求めすぎない【適合性】、使い手にとってわかりやすく易しい【わかりやすさ】、実験的に試すことができる【試用可能性】、そして採用が周囲に見える【可視性】の5つです。 どんな企画を進めるの? 現在、コミックやアニメをテーマにした観光コンテンツ配信アプリの事業企画を進めています。ターゲットは意思決定者が女性となるファミリー層を想定し、カスタマージャーニーに沿ってアイデア出しを行う段階です。たとえば、現地訪問前に計画に必要な情報を、写真や口コミに加えて映像、音、匂いといった五感で提供することで、情報提供者と受け手との隔たりを解消し、旅先の魅力をより的確に伝える機能などが挙げられます。また、ARなどを活用して現地体験を向上させる案も検討中です。 設計プロセスはどう進む? この設計プロセスでは、まず知ってもらうための【可視性】と【比較優位】、次に使ってもらうための【わかりやすさ】と【試用可能性】、そして使い続けてもらうための【適合性】が重要だと理解しました。実際、「イノベーションの普及要因」の5つの視点は、チェック項目として活用でき、AIDMAの各段階と結びつけることで具体的な設計が可能です。たとえば、 AIDMAの考え方は?  ・A(注意をひく):目に留まる【可視性】の工夫を  ・I(興味をもつ):シンプルで【わかりやすい】情報提供を  ・D(欲求となる):他と比べて魅力的な【比較優位】を提示し  ・M(記憶する):利用者の行動パターンに合った【適合性】を確保し  ・A(行動する):試しやすい【試用可能性】で実際の利用に繋げる

データ・アナリティクス入門

仮説力で見える未来のカタチ

仮説検討は効果的? フレームワークを使って仮説を検討する重要性を改めて実感しました。自分の視点だけで考えると、異なる仮説が実は同じ意味を持っていたり、抜け漏れや重複が生じ、MECE(漏れなく、ダブりなく)にならないことがあると感じました。また、業務では自社の既存データを中心に扱っており、外部のデータと比較する機会が少ない点にも気づきました。一般的なデータにも注意が必要で、信頼性が低かったり数値が大げさに見せられるケースもあるかもしれません。こうした状況だからこそ、学んでいる知識を活かし、有効なデータと信頼できる情報源を見極める必要があると思いました。 動画から何を学ぶ? 先週のグループワーク後に視聴した関連動画で紹介されたさまざまなグラフや分析手法も非常に参考になりました。自分がこれまでなんとなく実施していた方法が当てはまる部分もあれば、これまで注目していなかった視点に気付くこともあり、改めて復習する意欲が湧きました。 実務で新発見は? 実務では、指示通りに同じグラフを作成することが多い中、自分自身でフレームワークを活用して仮説を立て調査することで、新たな発見につながる可能性を感じています。現在の職場では、これまでにない未来的な取り組みが多く、自社の過去のデータだけでは捉えきれない視点が必要だと再認識しました。大きな歴史的流れに沿った視点も、今後の改善に大いに役立つと考えています。 改善策の検証は? まずは、フレームワークを用いて「どの部分が改善され、会社の売上に貢献できるか」という仮説を立て、データの収集と検証に取り組みたいと思います。また、データだけに頼らず、職場の改善点や取り組みについても多角的な視点を持って検証することで、会社全体の業績向上だけでなく、自分自身の成長につながる発見があると期待しています。

データ・アナリティクス入門

データに基づく問題解決法を学んだ充実の時間

分析の基本を理解するには? 講座全体を通して学んだことのポイントは以下の通りです。 まず、分析についてです。分析とは、比較することと同義です。そして、問題解決のプロセスにおいては「What→Where→Why→How」の順序で進めることが重要です。平均値を見る際には、そのばらつきにも注意を払いましょう。対策を決定する際には固定的にせず、柔軟に対応することが求められます。また、生存者バイアスに影響されないように注意し、生存者と非生存者の両方に目を向け、データの分布全体を分析する必要があります。結果を他人にわかりやすく伝えるためには、データのビジュアル化が有効です。 戦略策定で役立つ方法は? 次に、下半期の戦略策定です。クライアントの下半期戦略を作成する際に、講座で学んだ分析のフレームワークを活用することができます。 データをどう活かすか? さらに、分析結果の資料への落とし込みについてです。クライアントの意思決定を支援することを目的として、データの見せ方に工夫を凝らします。 データ分析の効率化を目指すには? データ分析のやり方の向上も重要です。AIなどのツールをうまく活用することで、精度の高い分析を短時間で実施します。必要最低限の情報をもとに素早く答えを出して実行する。このサイクルを多く回すことで、最短で最大の効果を生み出すことが可能です。 効果的なデータ伝達法は? 最後に、データ分析結果の伝え方についてです。対峙する相手は数値分析を本職としていないことが多いので、単なる数値の伝達だけでは不十分です。データを可視化し、クライアントの課題を踏まえたフォーマットに変換します。クライアントが知りたいのはビジネス上のインパクトです。そのため、ビジュアルで見せたり、ビジネス言語で表現して、一目で理解できるようにすることが重要です。

マーケティング入門

魅力満載!ナノ単科体験談のすべて

顧客心理を理解する重要性 顧客心理を理解し、商品をどのように魅せるかを考えることは非常に重要です。同じ商品であっても、ネーミングを工夫するだけで売上が大きく変わることがあります。例えば、「アルミ容器のない冷凍うどん」が売れなかったが、「水のいらない冷凍うどん」と名称を変えたところ、売上が100倍にも増加したことがあります。このように、商品のイメージが顧客の持つイメージや欲求に訴えない限り、売れることは難しいのです。 競合に似てしまう罠を避けるには 商品を差別化しようとすると、競合のヒット商品に似てしまうことがよく起こります。この罠に陥らないためには、常に顧客に注目し、顧客の心理を理解することが重要です。一方、商品開発においては、イノベーションの普及要件という効果的なフレームワークがあります。これは比較優位、適合性、わかりやすさ、試用可能性、可視性の五つの要素から成り立っています。これらの要素を顧客視点で評価し、商品の魅せ方を工夫することが、顧客の心理を掴むために役立ちます。 BPO事業への参入の課題は? 私の部署では、BPO事業への参入という目標があります。商品販売ではなく、自分たちのスキルを提供する形で進んでいます。そのため、私たち自身の魅せ方についても、イノベーションの普及要件に基づいて検討しています。他社人材と比較した際の優位性や、顧客のニーズに応じたサービス提供、分かりやすい料金プランやお試しプランの提供、最先端のデジタル技術の採用を考慮しています。 観察と自己評価で顧客心理を掴む 商品について観察し、売れない理由とその解決策を考えることで、顧客心理を掴む訓練になります。この際、イノベーションの普及要件を照らし合わせ、自分であればお金を払って欲しくなるかを常に考えながら、顧客視点と心理を意識して思考することが重要です。

クリティカルシンキング入門

データ分析のコツで業務効率アップを実感

数字分析で見える傾向は? 数字をいくつかのパターンでグラフ化し比較すると、傾向や特徴がつかめることがわかりました。知りたい情報に対して、意図的に複数の分析軸が必要であることも理解しました。特に一番の気づきは、一つの分析結果だけを見てすぐに結論を出すのは危険だということです。急ぐあまりに、ついやってしまいがちですので気を付けたいと思います。 分解時の注意ポイントは? また、切り口を考える際のポイントとして、全体を定義したうえでモレなくダブりなく分解していくことが重要だと感じました。意識してチェックしていないと、歪みが出ることに気付けません。 課題の本質をどう見抜く? 自分の業務では、お客様アンケートなどを整理する際の切り口を設定するときに使えると思いました。さらに、原因不明な状態で課題改善を依頼された際にも有効だと感じます。例えば、上司から「この課題はおそらくこの辺に原因があるからこの方向性で解決してほしい」と相談され、現場では「ほんとの原因はそこではないと思う」という意見の乖離があった際、どのように調整すればよいか悩むことがあります。そのようなときに、要素分解を用いて課題の本質を明らかにすることができると思いました。 精度の高い分析へ向けて 現在推進しているサイトのUI改善は、ヒアリングを中心に改善施策を検討していますが、今一度データの分析を掘り下げてみたいと思いました。その際に以下の点を実施しようと思います。 - 切り口を複数用意するために、分析に必要なデータを多く収集する - 手を動かして分解する - どんな切り口が分析に役立ちそうか関係者にもヒアリングしてみる - モレなく、ダブりなくの視点で問題ないか、分析の切り口を周囲の人と意見を聞き確認してみる 以上の点を意識して、より精度の高い分析を行いたいと思います。

戦略思考入門

差別化戦略で企業を選ぶ決め手とは?

成熟市場への取り組み方は? 成熟市場においては、差別化戦略が非常に重要です。差別化を図らなければ、業界のトッププレイヤーに対抗することは難しく、多くの場合コストリーダーシップに勝てません。しかし、差別化戦略を実行する際には、その軸を決定するのが難しく、ありきたりなアイディアに陥りがちです。そのため、「他業界事例の収集」と「集合知」を活用することが不可欠であり、自社の強みと外部の力を組み合わせる選択肢も考慮すべきです。 ターゲット設定はどう進めるべき? 差別化戦略においては、ターゲット設定が非常に重要です。競合と比較した際の自社の強みを理解し、顧客の詳細な情報を把握することが求められます。どの戦略も永遠に続くものではありません。市場環境の変化を踏まえ、常に戦略を見直し続けることが大切です。また、特定の戦略を選んだからといって、他の可能性を軽視してはいけません。 エリアビジネスでの差別化法は? 特にエリアビジネスにおいては、どのように競合他社と差別化を図るかが課題です。製品や価格での差別化が難しい中、何を価値として差別化を図るかを意識する必要があります。仮説としては、顧客接点での質が重要で、多くの業界プレイヤーがここで差別化を図っています。独自路線を進むためには、さらに顧客解像度と自社理解を深める必要があります。プロモーション部分でも最近は糸口を見出しつつあります。 顧客インタビューの活用法は? 実際に顧客へのインタビューを行い、自社の強みをどのように捉えているのかを確認しました。また、エンドユーザーが何を基に企業を選んでいるのかをヒアリングしました。その他業界事例の収集や、1社で構わないので、差別化に向けた明確な仮説構築も行っています。 以上のような取り組みを通じて、差別化戦略の成功につなげていきたいと考えています。

アカウンティング入門

ビジネスの心臓部を深掘る学び

P/Lの基礎はどう見る? 先週、P/L(損益計算書)の基本的な理解が大切であると学びました。特に経常利益について、これは持続的に利益が出るかどうかを測る指標であり、本業の儲けに加えて財務活動での収益や費用が常に発生するという基本的な認識を持てたことが、私にとって大きなプラスとなりました。 原価率はどう変化? 次に、売上原価率について、「原材料費が高くなっているのか、それとも原価率が高い商品が売れているのか」といった視点が学びとなりました。売上高が伸びた際には、原価率の変動原因を細かく見て、売上を形成する製品に基づいた戦略を立てることが重要だと感じました。また、当たり前のことではありますが、販売価格が低ければ原価率が上がる(クーポンによる安売りなどが原因)という点にも気付かされました。事業計画を達成するためには、利益を確保しつつ売上を伸ばすことが重要であると再確認しました。 取引先のP/Lって? そして、実際に取引先や競合他社のP/Lを読み解くことに挑戦したいと考えています。具体的には、営業外収益や費用がどの程度あるのか、売上原価率が企業や年度ごとにどのように変化し、何がその原因であるのかを理解し、それが戦略にどのように結びついているのかを把握したいです。また、新聞で最終利益が報じられた際に、売上総利益、営業利益、経常利益の中でどこが影響してその結果が生まれたのかを確かめたいです。 IR活用は確実? これを実践するために、11月に決算が発表された取引先企業のIR(インベスター・リレーションズ)を確認し、売上総利益、営業利益、経常利益の各利益率を同業界の平均や他社と比較することを毎週行いたいと考えています。この取組は、異なる業界である建設、エネルギー、人材業界から各1社ずつ選び、競合他社も含めた計6社を対象としています。

マーケティング入門

売上向上のためのターゲット戦略

誰が商品を買うべきか? 商品を成功に導くためには、誰に売るかを明確にすることが不可欠です。どんなに良い物でも、適切なターゲットを定めていないと、その魅力を十分に伝えることができず、売上につながりません。ターゲットに合わせたプロモーション戦略を作成することで、商品の訴求力を高め、顧客にその価値を感じてもらうことが可能です。 既存製品に新しい価値を? 自社製品の強みを組み合わせることで、既存製品であっても新しい価値を発見し、差別化を図ることが可能です。具体的な利用場面をイメージし、顧客がそこに価値を見出す手助けをすることが重要になります。 また、ターゲットと提供する価値がしっかりと結びつくプロモーション施策が必要です。市場の顧客に商品の価値を認識してもらえなければ、大ヒット商品につながりません。 競合との差別化ポイントは? ポジショニングマップを用いて、競合との差別化を図るポイントを見つけ出すことも重要な作業です。自社の強みを2つの軸に絞り込み、市場開拓を進め、ターゲットを明確にすることで、経営資源を有効に活用し、費用対効果を高めることが必要です。 新規事業、特にBPO業界に参入する際には、まず自社のリソースを活用し、顧客に価値を感じてもらえる分野を特定することが求められます。その後、特定した価値に魅力を感じる市場やターゲットを定め、選択と集中を行います。そして、訴求ポイントを強化するために必要なスキルの獲得や品質の向上を図ります。 ターゲット設定の基準は? 最後に、セグメンテーションの切口を探し、ターゲティングの評価基準である6Rを考慮しながらターゲットを定めることが肝心です。さらに、競合と比較しながらポジショニングマップを利用して、自社の差別化ポイントを確認する習慣を持つことが、成功に導くための重要な戦略です。

「比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right