データ・アナリティクス入門

平均だけじゃ見えない真実

単純平均の落とし穴は? 単純平均は、ばらつきを見えにくくし、また外れ値により大きく値がぶれる可能性があります。そのため、何が適切な代表値であるかを十分に考慮した上で、比較や分析に臨むことが大切です。 標準偏差で何が分かる? 標準偏差に関しては、波の大小をイメージすることで、そこから導き出せる情報がわかりやすくなります。これにより、平均だけでは捉えきれないデータの分布の実態を理解しやすくなります。 年齢層の違いを把握するには? 具体的なデータセットを例に挙げると、例えば、ある組織の従業員の平均年齢が38歳の場合、全体は大まかに新卒5年未満、30代後半~40代初頭、60歳前後という3グループに分けることができます。単純な平均値だけではこれらの年齢層のばらつきを正確に反映できませんが、標準偏差を合わせて求めることで、年齢層の多様性をより具体的に把握し、組織の魅力としてアピールする材料とすることが可能です。 外れ値の影響は? また、外れ値がビジネス上の意思決定にどのように影響を与えるかという視点も重要です。たとえば、顧客ごとの売上金額を分析する際、1%程度の大口顧客の存在が全体の平均を引き上げてしまうと、実際の単価水準が正しく把握できなくなります。単純平均のみを頼りにすると、実態との差を見誤り、競合との比較でも課題が見えづらく、適切な方策に結び付けることが難しくなります。 多角的分析は有効? このような背景から、単に平均を算出するだけでなく、加重平均や中央値、そして標準偏差を併用することで、データのばらつきを把握し、その意味するところを考察する姿勢が重要だと改めて感じました。年度末のまとめや次年度への申し送りの際にも、前年や前々年との比較を行い、伸び率や減少率を幾何平均で求めるなど、より多角的な視点でデータを分析することが求められます。 データの可視化は? 計算式の意味を完全に理解していない部分もありますが、情報やデータが揃っているなら、まずは標準偏差を算出して、その意味合いを考えることから始めると良いでしょう。数字をただ並べた表だけでなく、ヒストグラムなどを用いてばらつきを可視化することが、まず第一歩だと感じています。

データ・アナリティクス入門

重要性を再確認しよう!データ分析の基本と新発見

今週の学びの重要点は? 今週の学習を通じて重要だと感じた点は以下の3つです。 まず、分析の目的を意識することの重要性です。現在の業務においても、データを加工したりダッシュボードを作成することに満足せず、あくまで何を導き出したいのか、何を証明したいのかといった初期の目的を常に意識するように努めています。この点を再確認し、今後も目的を忘れずに分析を進めることを誓います。 グラフ作成の新たな発見とは? 次に、グラフのX軸やY軸の配置が読み手に与える印象を大きく左右する点について、新しい発見がありました。これまではグラフの種類による印象の違いは認識していましたが、X軸やY軸の置き方にも注意を払う必要があることを実感しました。これからは、この点を意識してグラフを作成していきたいと思います。 比較分析の基本に戻る必要性 最後に、分析は比較であるという基本に立ち返ることです。業務では前年や前月など、期間軸による比較が多いですが、例えば国籍や予約経路など、他の軸での比較も意識することで多角的な分析が可能になります。これを踏まえ、実践に取り組んでいきたいと思います。 ホテル予約サイトでの活用法は? 現在、ホテル予約サイトのプラットフォーム運営に携わっており、登録施設の売上最大化のサポートをコンサルティングしています。日々の予約データを以下のように活用することで、より精度の高い提案ができると考えています。 - どの国籍からの予約が多いか、平均宿泊日数が長い国籍はどこか - 何月の予約が多いか - 売れている価格帯はどれか データ比較をどう進める? これらのデータを基に、最適な提案を施設に行いたいと考えています。この学びは現在の業務に直結する分野であるため、まずは実践を心がけます。そして、「比較」を意識して、これまで考えていなかった視点からの比較も試みたいと考えています。具体的には、自社内データや他社との比較だけでなく、政府の提供するデータとの比較も行ってみようと思います。 また、前期のナノ単科同様に他者への共有も積極的に行います。学びをチームメンバーに説明することで、より深い理解と正確な認識を確立できるため、この点も重視していきます。

データ・アナリティクス入門

仮説と実践が創る成長の軌跡

検証プロセスはどう進む? まず、検証のプロセスは「問題の明確化(what)」「問題箇所の特定(where)」「原因の分析(why)」「解決策の立案(how)」という4段階に分解されています。これにより、検証を行う側も結果を伝える側も、内容を分かりやすく把握することができます。 仮説は何で生まれる? 次に、仮説検証では、なぜ問題が発生するのかという問いに対して、最初は考えを絞らずに複数案を出してみることが重要です。その際、フレームワークを活用して、情報が抜け落ちたり重複したりしないようにすることで、双方にとって理解しやすい検証が可能となります。 比較はどう整理すべき? また、比較検証を行う際は、必ず同じ条件下で情報を整理することが求められます。同じ基準で比較しないと、結果に誤差が生じやすいため、グルーピングの段階から条件を揃える工夫が必要です。 知識のアップデートは? さらに、一般常識や最新のニュースに目を向け、常に学び続けることが大切です。自分の判断基準が古く、発展しなくなると検証能力は向上しません。 モノづくりの課題は? 普段取り組んでいるモノづくりの研究・開発現場では、商品コンセプト、技術・性能・品質、コスト、人材育成など、さまざまな分野の問題を分解して検証しています。問題が数多く存在するため、優先順位をつけることが重要です。自分ひとりで作業するわけではなく、誰もが納得できるような優先順位の付け方や見せ方に工夫を凝らしています。現在は、特にコストの問題を最優先して取り組んでおり、若手には楽しい商品開発の役割を担ってもらっています。 成果をどう伝える? 仮説を立てながら、ChatGTPの助けを借りつつ情報を整理・検討するプロセスは非常に有意義です。その結果を他者に伝え、納得が得られるかどうかを検証の一つの指標としています。 出張準備は万全? また、7月から8月にかけて海外出張を予定しており、その準備として自分の考えを整理し、誰もが納得できるストーリー作りと、事実に基づいた情報収集に努めています。出張先で提示した問題定義に対する回答を、秋頃に成果物として検証する計画です。

データ・アナリティクス入門

検証と比較で広がる学び

分析の目的は何? 分析の本質は比較にあると実感しています。何のために分析を行うのか、もう一度立ち返り、プロセス、視点、アプローチを意識することが大切です。複数の仮説を立て、様々な切り口から問題にアプローチすることで、見落としがちな問題点も網羅することができると感じます。 データ分布はどうなって? 全体像を把握するには代表値の比較が有効ですが、同時にデータの分布がどのようになっているかもしっかりと確認する必要があります。抜け漏れがないか、条件反射に頼らずに注意深くチェックすることが肝心です。また、標準偏差の変動は、株のボラリティに似た感覚で捉えています。 検証の手順は? 仮説は何度も繰り返して検証すべきで、すぐに答えを出さず、切り口に抜け漏れがないかを再点検することが重要です。問題点を明確にするためにはデータを見える化することが効果的で、これによって次のアクションやステップを取りやすくなります。データの判断目的やその見せ方にも気を配る必要があると感じます。 打ち手の成果は? 特に、ある動画で打ち手の費用対効果について触れられていたことが印象的でした。これまで「どの打ち手を優先するか」が重要だとは考えていましたが、実際にその打ち手を実施した際のリターンまで考えるという視点は、私自身の経験上、一度も考えたことがありませんでした。ファイナンスの考え方であり、その入り口ともなる新たな発見に、深く感謝しています。 時間の使い方は? また、他の社員より明らかに時間を要している業務があると感じています。正直なところ、その業務が自分に向いていなかったり心理的に好ましくなかったために、時間がかかると言い訳をしていた自分がいました。しかし、他者との比較を通して、行動前の準備段階で何か問題があるのか、結論から逆算するなど、対策案の仮説やシミュレーションを実際に試している最中です。 改善策はどうする? 現状をしっかりと把握し、問題点を見つけるとともに、どのような状態にすべきかを工程を逆算しながら検証しています。苦手な業務の改善につなげるため、うまくいかなかった場合はさらなる仮説を立て、柔軟に対応していくつもりです。

クリティカルシンキング入門

「データ分解術で見つけた新たな視点」

情報を分解する重要性は? 情報を分解することによって、情報の解像度が向上します。データを加工するときには、以下の点に注意すると良いです。 まず、与えられた表をそのまま見るのではなく、全体を把握するために自分で欄を増やす工夫をしましょう。さらに、絶対値だけでなく相対値も見ることが重要です(比率に注目する)。数字はグラフにできると、その情報の威力が増します。「眼に仕事をさせる」ことがポイントです。 データの区切り方で何が変わる? データをどのように区切るかによって、解釈が変わってきます。刻み幅によって、分布の見え方が変わるため、どのような分け方が良いかをいくつか試行錯誤する習慣を身につけることが大切です。どのくらいの刻み幅にすれば良いかだけでなく、どのように区切ると意味を持つかを仮説として考えることが重要です。また、分解の際には多様な切り口を考えてみることが必要です。ある切り口では特徴的な傾向が見えなくても、別の切り口では見えることがあるため、複数の切り口で分解してみることが有益です。 まずは「全体」を定義することが重要です。 セミナー結果の詳細分析法は? セミナーや研修の参加者アンケートの結果を分析する際には、表面的な結果だけではなく、"when"、"who"、"how"など、多くの切り口から分解して内訳をしっかり確認します。2つ目、3つ目の傾向がないか意識しながらデータ分析を行うことが求められます。 業務報告はどう改善すべき? 月次の業務報告作成の際には、集計したデータをグラフ化し、表の状態では見えなかった傾向がないかを確認するようにします。データをどこで区切るか、どのように切ると意味を持つ切り方になるかを仮説立てて試してみることが大切です。 今年度のセミナー内容を企画・提案する際には、過去数年分のテーマと参加者アンケート結果を比較して、どのようなテーマがどの属性の参加者に反応が良いのかを分析します。その結果をもとに、今年度の企画案を作成します。また、業務報告を作成する際には、これまで毎月固定の項目の傾向分析・報告だけを行っていましたが、次月以降は新たな切り口での分析を1つ以上追加して報告する予定です。

マーケティング入門

新たな顧客を狙うマーケティング戦略のヒント

売る相手は誰? 今週は「誰に売るか?」を考えるためのフレームワーク、セグメンテーション、ターゲティング、ポジショニングについて学びました。先週の「何を売るか?」と比較すると少し難しく感じられ、理解に時間がかかりました。用語は知っていましたが、普段の業務ではあまり活用できていない思考法だと気づきました。 顧客拡大で何が大事? マーケティングの学びを通じて、商品を変えずに新しい顧客を見つけることで売上を拡大できることが分かりました。この点で、マーケティングの重要性を再認識しました。また、ポジショニングマップの軸は2つに絞ることが重要です。1つの商品について顧客が認識できる特徴は最大2つで、多くの長所を挙げるとメッセージがぼやけてしまうため、2つに絞ることは勇気が必要です。 どう価値を伝える? ポジショニングを考える際には、顧客が商品をどのように使い、その価値をどのように感じるかを具体的にイメージすることが重要です。この点については以前から意識できていたので、今後も継続して取り組みます。 提案力はどう生かす? 顧客企業へのシステムやサービス提案時には、コンセプト設計に活用できると感じています。実際、顧客企業ではターゲティングやポジショニングが十分に行われていないことが多いです。デモグラフィックに基づくターゲットセグメントの選定と、それに基づくペルソナの作成までに留まり、ポジショニングが欠けているため、どのように認知してもらうかを考える過程が不足していることが多いと理解しました。 ブランドはどう映る? 顧客企業のブランドイメージについても意識すべきです。現時点では意見を述べる機会は少ないかもしれませんが、今後はそういった点も含めて任せてもらえるように、ポジショニングの考えをチーム全体で共有し、サービス開発に活かしたいと考えています。 戦略はどう共有する? 自社製品に関しては、ポジショニングマップを作成してPdMに見せることを計画しています。また、チーム全体のサービス企画力向上のために、特にポジショニングに関する学びを他のメンバーと共有する勉強会も設けたいと思います。

データ・アナリティクス入門

データで掴む!即効性のある仮説検証術

仮説の設定と共有はどうする? 「仮設の設定」 何が(what)、どこで(where)問題が発生しているのかという視点で考えることが求められます。その際、3Cや4Pのフレームワークを用いることで、網羅性を確保できます。自分自身の仮説を持つことも重要ですが、独りよがりにならないように、複数人で仮説を出し合うことが大切です。さまざまな視点で仮説を考えることで、より豊富な仮説を出すことができます。そして、その仮説がなぜ(Why)起こっているのかを考え、解決策(How)を導き出します。 仮説の検証はどのように行う? 「仮説の検証」 解決策(How)として妥当かどうかを検証する際には、立証したい仮説に偏ったデータ収集は避けます。他の仮説を立証するようなデータも含めて、客観的にデータを比較することが重要です。これにより、仮説の説得力が強まり、仮説から導き出される結論(意思決定)の実効性も高まります。どんな単位を使ってデータを比較するのかや、主張したい仮説をいかに端的に説明できるかを慎重に考える必要があります。 データ分析で何を重視する? 「仮説の共有」 特に組織においては、「問題解決の仮説」から導き出される「結論の仮説」を実行する際に、コミュニケーションの課題が発生します。自身の仮説を客観的に立証した上で、共有するための仮説を立てる必要があります。 自身の仕事の一つの課題として、ドライバーの待機時間の削減が挙げられます。得られたデータから平均値を算出し、標準偏差も計算します。そして、組織として持つべきKPI値(平均値・標準偏差)と比較します。そのうえで、KPI値未達の箇所(Where)に注目し、なぜ(Why)未達なのかを関係部門と数値を見ながら考えます。その後、仮説の設定(問題解決方法 How)を行います。 まずは、得られたデータから平均値と標準偏差を算出します。次に、得られた平均値が妥当なのかを標準偏差から検討します。標準偏差を悪化させている要因(外れ値)に注目し(Where)、なぜ外れ値が発生しているのかをプロジェクトメンバーと意見を交わして(Why)、直近で必要な対策(How)を考えます。

マーケティング入門

イノベーション視点で製品価値を再考

イノベーション普及の要件とは? イノベーションの普及における要件をマーケティングの視点から初めて学び、その重要性を強く感じました。これらの要件である比較優位、適合性、分かりやすさ、試用可能性、そして可視性の5つの視点をフレームワークとして、自社の製品やサービスを再評価する必要があると考えています。 課題と不安をどう乗り越える? 特にIT企業においては、製品やサービスの説明が機能解説に偏りがちで、顧客視点からの利用価値や利用方法を効果的に提案できていないケースが多く、我が社も同様の課題を抱えているのではないかと危惧しています。 外部視点を取り入れるには? 今回の実践演習では最大4問と想定されていた課題が6問も出題され、回答が不十分であったのかもしれないと少し不安を感じました。それでも、IT企業の事例を基に、製品やサービスの説明が顧客視点での価値提案に欠けているという認識を改め、お客様向けのプレゼン資料や製品紹介資料を見直すことにしました。 社内部門へのアプローチ法は? さらに、経営企画を担当する立場として、親会社や社員、外部パートナー会社を顧客と捉え、彼らのニーズや依頼の真意を常に考える習慣が重要だと感じています。この視点を持つことで、提案内容や改善策にニーズを反映できる機会を増やせるのではないでしょうか。バックオフィス業務はどうしても視野が狭くなりがちなので、顧客視点を一層意識して業務に取り組んでいくつもりです。 商品魅力を営業視点でどう伝える? また、商品やサービスの紹介資料は営業担当と共に相談しながら、検討する機会を設定していきます。私自身、営業の経験があるため営業的な視点は持っているつもりですが、今回の講習で学んだ「商品の魅力を伝える」視点はまだ十分でなかったことを反省しています。営業担当にも理解を得られるよう努めていきたいと考えています。 社員を顧客とする意識をどう高める? 最後に、社員を顧客として捉える意識は持っていたつもりでしたが、その取り組みがまだ不十分だったことを今回の内省を通じて認識しました。今後はこの意識をさらに高め、業務に活かしていきたいと思います。

データ・アナリティクス入門

原因探索で拓く学びの未来

なぜプロセスを分解する? WEEK05「原因を探索する」では、まず一連のプロセスを分解して、各段階の転換(例:表示からクリック、クリックから体験レッスンへの導線)について整理する手法が紹介されていました。次に、問題の原因を探るために、企業戦略だけでなくそれ以外の要因も視野に入れる「対概念」の考え方が示され、幅広い視点での分析が求められていることが分かりました。 どうして要因に注目する? また、原因探索の際には、コストやスピード、意思疎通といった項目を重要度に基づいて重み付けし、最もインパクトのある要因に注力することが提案されています。さらに、少ない工数でかつリスクを抑えて改善を実施できるA/Bテストによるランダム化比較実験の実施方法も取り上げられ、実践的なアプローチとして評価されていました。加えて、ファネル分析により、ユーザーの行動プロセスを段階ごとに可視化し、どこでユーザーが離脱しているのかを実数と比率の両面から明らかにする手法も理解できました。 この事例はどう見る? 一方で、筆者自身が携わる自動車部品メーカーの事例では、採用ファネル管理表の作成が依頼されながらも、実際の元データが分散・乱雑な状態にある現状が語られていました。採用プロセスの各段階(応募者数、書類選考、面接、内定)の実数と割合を把握し、Excelやグラフ化ツールを使って直感的に状況を捉え、進捗管理やボトルネックの特定、採用プロセス全体の効率化と品質向上を目指すという目的が明確にされています。 なぜデータ整備が必要? そのため、まずは不要なデータの削除、重複データの統合、欠損データの処理、書式や値の統一など、元データの整備に着手する必要があります。加えて、着手前には「なぜ採用ファネル管理表が必要か」を改めて検討し、採用業務全体に問題がないか、他の角度から問題が発生していないかを確認する重要性が強調されていました。 分析の重要性は何? 今回の学びを通して、分析の基本プロセスである「what, where, why, how」を行き来しながら、各ステップにしっかり向き合うことの重要性を改めて認識することができました。

アカウンティング入門

テーマパーク企業で学ぶ!会計の新常識

ライブ授業の意義は? ライブ授業で、ある大手テーマパーク企業のB/Sを事例として読み解くワークに取り組みました。まず、その企業の売上の構成要素や提供する価値を明確にした上で、次のステップとして売上原価の項目について検討する手法は、前提条件をしっかり確認する重要性を実感させました。 人件費の扱いはどう? 具体的には、通常「人件費」は販管費に含まれるという認識が一般的ですが、実際には、人の働きが直接売上につながる場合には売上原価として計上される可能性がある点が印象に残りました。このように、B/SやP/Lの項目はある程度のルールがあるものの、企業ごとにその取り扱いが異なることがあり、また、会計基準の影響を受けにくいC/Fの存在意義も改めて感じました。 他業種比較は有効? 全体を通して、今回のワークで会計項目の多様性と、売上原価に関する考察が非常に的確であると実感しました。さらに専門知識を深めるためには、他の業種との比較にも取り組むと、理解が一層進むと考えています。 他業界の実例は? また、以下の点についても考えてみるとよいでしょう。 ・他の業界では、売上原価がどのように計上されるか、具体例を挙げて考える。 ・C/Fが会計基準の影響を受けないことで、特定のビジネス活動にどのようなメリットがあるのかを考察する。 なぜ財務三表を見直す? 今回の学びを踏まえ、再度他企業のP/L、B/S、C/Fを見直してみたいと思います。企業の考え方がそれぞれの財務三表にどのように表れているのかに思いを馳せながら読むことが、理解を深めるためには大切だと感じました。 環境変化をどう見る? さらに、過去の財務三表と現在のものを比較し、社会情勢や企業を取り巻く環境の変化まで考察できれば、より一層成長できると考えています。その際には、たとえばコロナ前後や法改正前後など、さまざまな出来事に注目し、根拠をもって比較基準を定めながら読み解くことが重要です。また、異業種や同業種のB/S、C/Fを、背景にある意図まで考えながら数値の裏に隠れた理由を明確にしていくことにもチャレンジしていきたいと思います。

マーケティング入門

顧客目線でマーケティング戦略を見直す方法

顧客目線をどう捉えるか? マーケティングの基礎として、顧客目線で考えることが前提です。その上で、イノベーションの普及条件(5つの条件)と照らし合わせることにより、市場の立ち位置や比較がより明確になります。 行動変数で顧客を理解? 顧客のセグメンテーションを検討する際には、デモグラフィックだけでなく、趣味や思考、価値観などの行動変数も考慮すると、顧客像を多角的に把握できます。これにより、市場のトレンドを捉えることが可能となります。 さらに、成長性を評価する6Rなどのスクリーニングを行うと、ターゲティングが現実的になり、場合によってはターゲティングの変更も視野に入れることができます。 ネーミングで価値をどう伝える? ネーミングをする際も、顧客が抱く「負のイメージ」を想定し、それを解消することが重要です。これにより、顧客が求める価値を理解し、自社製品の価値を効果的に伝えることができます。 ただし、競合と比較して製品開発やプロモーションに集中しすぎると、「差別化の罠」に陥ることがあります。本来提供すべき価値を見失い、競合との差別点ばかりに焦点を当てる危険性があります。マーケッターとしては、この点にも注意が必要です。 結果として学んだことは、顧客が常に起点であることを理解し、様々な関係性をフレームとして当てはめることです。 SNS戦略で何を重視する? 自社のECサイトやSNSでの戦略構築においても同様で、顧客目線の整理、行動変数による理解、そして6Rを鑑みた顧客理解が必要です。主観に頼らず、顧客が何を求めているのかを理解し、コミュニケーションを図る戦略立案が求められます。主観でSNSの発信内容を決定するのではなく、顧客との接点を心理的変数で設定することを実行したいと思います。 コーポレートSNSでは次のステップが必要です: 1. フォロワーのサイコグラフィック変数を導き出す。 2. 顧客理解を基に、6Rスクリーンニングの仮説でターゲット理解と機会を洗い出す。 3. 競合とのポジショニングを考慮し、実行すべき戦術を決定する。 4. その測定を繰り返すフレームワークの作成を実践する。

データ・アナリティクス入門

納得するだけではなく、行動に移そう!

ストーリーの重要性は? 今回の講義で最も印象に残ったのは、「やみくもに分析しない。ストーリーが大事」という点です。今まで意識していなかったwhereで傾向を掴み、どこまで掘り下げられるかという部分に気付かされました。whereを浅くしすぎるとwhyがまったく意味をなさなくなるため、問題がどこにあるのかという点にもしっかり目を向けたいと思います。 「わかる」と「できる」の違い 全体の講義を通じて感じたことは、講義や動画の内容に対して納得できる部分が多々あったということです。毎回わかっているつもりでしたが、実際に演習をしたりグループワークで意見を交換したりすると、うまくいかない場面が多いことに気付きました。「わかる」と「できる」は全然違うということを改めて実感しました。 賃金制度見直しのポイント 来期に向けた賃金制度の見直しに際して、以下のポイントを意識して分析したいと思います。まずは①自社の賃金制度のどこに問題があるのか、次に②なぜそのような問題が発生しているのか、最後に③どうすれば理想の姿に近づけるのかです。これらを講座で学んだことを活かし、具体的な賃金制度案を示していきたいです。 仮説からのデータ集め方とは? また、自身および一緒に働くメンバーに対しては「仮説➡データ集め➡検証」という明確な流れを意識することが少ないため、今回の学びを共有し、効率的・効果的に課題解決のステップを踏めるチームにしていきたいと考えています。 学びを日常に活かすには? チームで共有するためには、まず自分がしっかりと理解し、使えるようになることが大切です。学んだことがまだ全然身についていないため、まずは学んだ内容をもう一度振り返り、ポイントを整理し、日常業務や生活の中で1日1回は必ず実践することを意識したいです。特に「仮説を網羅的に立てること」、「何と何を比較すれば得たい結果が得られるのか、比較対象を設定すること」、「条件を揃えて比較すること」といった点について意識しながら日々考える習慣をつけたいです。

「比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right