データ・アナリティクス入門

仮説検証で未来を切り拓く挑戦

仮説の再考は? 仮説の分類について考える際、私は従来「問題解決を過去から見る」観点に主眼を置いていました。しかし、仮説全体を見直すうちに、「結論や未来を予測し、仮定の上、検証する」点には十分踏み込んでいなかったことに気づきました。 視野を広げるとどうなる? そこで、仮説全体を見る際には、結論や未来の予測を含む多角的な視点を持ち、バイアスにならないよう視野を広げて考えることが重要だと感じました。結論、つまりゴールから出発しデータを集めて検証していくものの、その過程で手戻りが発生し、結果として何度もデータを再確認することがあります。こうした経験から「方向性を見いだせて初めて動き出せる」という体験を増やしてみたいと思いました。時間効率を意識することで、普段の行動に留まりがちになりますが、時にはうまくいかないことを試みる勇気も大切だと考えています。うまくいかないことから得られる手戻りや試行錯誤の過程は、生産効率を低下させる一方で、自己を納得させるための貴重な材料にもなります。 根拠に基づく行動は? 行動計画としては、「仮説を立てる」にあたって、数字に基づく根拠やフェルミ推定を活用し、意思決定において経験則に頼らず新しい立ち位置を見つけることを目指します。また、これまで行ってきたお客様の離脱予測を、仮説をもとに見直し、データ収集を通じて有効な改善策を模索していきたいと考えています。 データの真実は何か? さらに、KPI関連指標については、チーム単体での目標達成がデータ分析を経ないままであったことを反省し、達成の要因を深掘りすることで、本当に正しい事業活動を行えているかを検証します。他チームや類似業務との比較を通じて、データ取得し仮説を立て分析を行うことで、一層の改善を図っていくことを目指しています。

データ・アナリティクス入門

仮説で未来を切り拓く!経営戦略の新視点

仮説の整理はどう? 問題解決のプロセスにおいては、「What」「Where」「Why」「How」といった仮説の立て方を4つのステップを通じて理解しました。また、「結論の仮説」と「問題解決の仮説」という2種類に仮説を分類できることも学びました。特に、家具メーカーのWebマーケティングにおける指標へのアプローチは、私にとって非常に参考になりました。メーカーで働く身として、定量的なKPIを用いた費用対効果の分析の重要性を改めて認識しました。WEEK04では内容が難しくなってきましたが、総合演習や課題に取り組みつつ、学びを継続し、単位取得に向けて努めていきます。 マーケ戦略の実践は? WEEK4で学んだ問題解決の仮説を職場で実践する予定です。「仮説思考をマーケティングに適用する」という視点から、3Cや4Pを効果的に利用し、リーダーシップではパッションを持つことを意識して行動したいと考えています。具体的には、ウイスキーの事例で、かつて高価とされていたウイスキーが、若者向けに手頃な缶製品として売上を拡大させた点を参考にしています。これは、今後の新商品の販売においても活用できると感じています。 未来予測の信頼は? 過去のデータを基にした予測はAIに頼ることが多いですが、未来の予測、つまり仮説を立てる部分においては、人間の方が優位であると感じます。他大学では生成AIを使用する学生が増えており、Web上での期末試験にも対策が講じられていることを知りました。生成AIに対抗できるよう、自らの仮説構築や現場課題の抽出を迅速に行い、PDCAサイクルをスムーズに回していきたいと考えています。今回学んだ知見を活かして、12月の競馬のレース、特にデータが少ない馬のレース予測にも挑戦してみるつもりです。

データ・アナリティクス入門

データ分析で失敗しないための初めの一歩

データ分析の初め方とは? データ分析を始める際、最初に注意すべき点は、いきなり「How」に飛びつくのではなく、まず原因を特定することが重要です。また、何を理想的な状態とし、そのギャップをどう見なすか、関係者との合意を得ておくことが肝心です。 MECEの概念とその活用法 MECE(Mutually Exclusive, Collectively Exhaustive)の概念については、有意義な切り口で切り分けることが大切ですが、乱用には注意が必要です。 データ分析の精度を高めるには? データ整理とデータ分析の違いや、分析の精度と説得力の関係については、明確な理解が求められます。例えば、データ分析がどのケースにより合致するかも考慮すべきです。現状から改善を目指すケース、あるいは未来に向けた戦略的なケース、それぞれに適したアプローチがあります。また、需要予測と異常検知といった異なるケースでの適用の違いも理解しておくと役立ちます。 ケースAの分析方法は? ケースAでは、例えばWEBサイトからの問い合わせデータや営業がSFAに入力した案件データを分析することが考えられます。現状の問い合わせ数に基づき、来期の目標やポテンシャルを過去のデータから算出するために変数分解を行います。 ケースBでの説得力あるストーリーの構築法 一方、ケースBでは、例えばグループウェアの切り替えに際し、役員を説得するためのデータ準備が求められます。説得力のあるストーリーを構築するために、現実的に入手可能なデータを調べることが重要となります。 具体的な結果を得るために これらのポイントを踏まえ、データ分析の取り組みを進めることで、より具体的で説得力のある結果を得ることができます。

戦略思考入門

規模の経済性で印刷業務を改善する方法

規模の経済性とは何か? 実践演習を通じて、生産数量が増えることで1個当たりの固定費が減少すること、すなわち「規模の経済性」という用語を初めて知りました。しかし、単純に発注量を増やすだけでなく、需要のバランスや原材料の供給、品質、在庫管理の問題など、多様な要因を総合的に検討する必要があると実感しました。この考えは、私の業務である資材の印刷費にも応用できそうです。例えば、需要の確認や原材料費、印刷部数などについて、過去の経験に頼るのではなく、常に現状に合わせて見直す必要性を感じました。 戦略的思考をどう実践する? 総合演習では、業界の数値や状況をフレームワークで整理し言語化することで、自分が考えていた施策とは異なる施策の可能性を見出せることもありました。「戦略的思考」の3つの要点を達成するためには、適切なゴールを設定し、そこに至る道筋を明確化することが重要であり、それを他者に理解してもらうために言語化することを業務でも実践していきたいと思っています。 印刷費管理の課題とは? さらに、印刷費の管理では、大量印刷による倉庫管理費や廃棄コストについても見直しが必要です。紙の原価が上昇している現状において、常に需要を確認しながら印刷の必要性を再考することが求められます。これに対して、顧客ニーズや印刷利用数のデータを基に、毎回印刷部数とその必要性をメンバーと共に確認していく提案を進めていきたいです。 フレームワーク活用の重要性 また、総合演習から学んだ3C分析やPEST分析などのフレームワークは、実際に自分の業務で使ってみることによって初めて身につくと感じました。これらの手法を用いて、自分の考えを他者と共有し、適切なゴールや対応策を探求していきたいと思います。

戦略思考入門

ビジネスを制するメカニズムの極意

今週は何を学んだ? 今週の学びについて、以下のように感じました。 ビジネスはゲームか? まず、資本主義社会におけるビジネスは一種の「ゲーム」であり、そこで戦うためには「ルール」である「メカニズム」を学ぶことが重要です。どんな戦略も基本的な原理原則から外れていては意味がないため、このメカニズムを理解することが大切です。例えば、星野リゾートの星野社長が教科書通りの経営を重視されていることにその点が表れています。 変化に対応するには? 次に、時代やビジネス環境の変化によりメカニズムも変わるため、これに対応できる姿勢が求められます。「守」「破」「離」という取り組み姿勢やマインドセットが重要であり、自分で手を動かして試すこと、自ら調べ分析することも必要です。データや街を歩いて集めた情報を把握し、時代や環境変化を考慮し、指数関数的な急激な変化に対応することが競争の基盤となります。 基本をどう生かす? また、過去の知識を有効に活用することが重要です。業務に取り組む際、小難しい手法に飛びつくのではなく、まずは基本を大切にし、先人の知恵に基づいて基本を理解してから行動すべきです。 スピード重視の理由は? スピードを意識することも大切です。「スピードこそが競争のベースになる」と学びました。「スピード感」を持つことが業務改善に役立ちますが、その速度が何のために必要なのかという本質を見失わず、変化に対応しPDCAを回すために用いるべきです。 実践で何を得る? 最後に、自分で手を動かし経験を積むこと、規模の経済性と習熟効果の観点で業務を分析することが今回学んだ重要なポイントです。これらのメカニズムをしっかり理解し、戦略を立てることが求められると思います。

クリティカルシンキング入門

データ分析で得た新しい視点を育む旅

多角的な分析って? 数字やデータの分析においては、多様な視点での切り口が重要です。どのように分けるべきか迷うこともあるかもしれませんが、迷うよりもまずは様々な方法で分けて可視化してみることが大切です。特徴が見えない場合もありますが、それはその分け方が適していないと学ぶ機会です。特に、MECE(漏れなくダブりなく)を意識して切り分けることで、より正確な分析が可能になります。まず全体像を把握し、MECEを意識した分解を行うことが効果的です。 次回の展開はどう? 現在はコンテンツ開発の時期ではないため、データ分析の機会は少ないですが、次回のコンテンツ開発時には過去のアンケート結果を様々な角度からMECEを意識して可視化することで、新しいコンテンツ開発に役立てたいと思います。また、別の企画での社内研修を考えており、参加者のアンケート結果を活用して次年度の研修内容をどのように改善するかを考える際にこの方法を活用したいと考えています。さらに、アンケート作成時に何を質問すべきか考える際にも役立つと感じています。 可視化の工夫は? 具体的には、以下の方法を試みようと思います。まず、様々なデータを見つけられる限りの切り口で分けて可視化すること。そして、データをエクセルに取り込み、パーセンテージ表示やグラフ化を行い可視化して確認する習慣を身につけることです。さらに、常にMECEを意識し、モレやダブリがないか確認しながら進めることが必要です。 振り返りの学びは? 過去に分析したアンケートデータをもう一度見直し、得た知識をもとに新たな視点で見てみることも重要です。こうした取り組みを通じて、データの見え方の違いを体感し、今後の分析に活かしていくつもりです。

データ・アナリティクス入門

未来を切り拓く!仮説思考の力

仮説はどう整理する? 複数の仮説を立てる際には、その網羅性と分類が重要です。過去の失敗を分析する場合や、将来の事業の成功を予測する場合には、3Cや4P分析を活用して仮説を立ててみると良いでしょう。 データ収集はどうする? 仮説を裏付けるためのデータは常に存在するわけではありません。必要な情報を収集する場合、誰に何をどのように聞くべきかを慎重に考える必要があります。都合の良い情報だけを集め、他の可能性を排除しないようにする意識も大切です。この姿勢は「関心や問題意識のないところに仮説は生まれない」というマインドセットにも通じています。 市場特性の見極めは? 3Cや4Pの視点で現在のビジネス状況を正しく理解することが不可欠です。しかし、市場や業界、製品が特殊な場合には注意が必要です。例えば、医療業界ではエンドユーザーが患者であり、購入決定権を持つのは医療者であるケースがあります。広告制限のある製品については、適切な顧客設定と検証が必要です。自社だけでなく、関わるグループ施設市場を含めた3C、4P分析も有効です。 3W1Hで速さは向上? 仮説の3W1Hを繰り返すことでビジネススピードが向上します。過去と未来の仮説を分けて分析し、サイクルを回すことが必要です。たとえば、大型コンペの参加が有効だったか、その前後の効果や成功の分析、次回の見込みや採用率の変化が周囲に与える影響の予測を行います。 Excel作業改善のコツは? データの比較基準が異なる場合、データの取得、加工、単位や見え方の統一が課題になります。実際の分析開始前の準備段階でのExcel作業に多くの時間を費やすことが課題となっているため、この点のスキルアップが必要です。

データ・アナリティクス入門

比較で深めるデータ分析の極意

比較で何が見える? WEEK1で学んだことにより、分析の基本は比較であるという理解が深まりました。例えば、A/Bテストでは、可能な限り条件を揃えた上で変更点を明示し、仮説を試すことによって、収集データの精度が向上します。これにより、データを活用した問題解決の要因分析と解決策の選択に深みが出てくると考えられます。 問題解決の流れは? 問題解決のステップには以下の要素があります。まず、問題箇所を明確化し(what)、次にその箇所を特定します(where)。続いて、原因を分析し(why)、最後に解決策を立案する(how)という流れです。特に重要なのは、whyでプロセスを細分化し、howでは複数の選択肢を洗い出して根拠に基づき絞り込むことです。 A/Bテストはどう? 手段としてのA/Bテストは、A案とB案を比較するためのテストで、できるだけ条件を揃えて比較対象を明確にすることが肝心です。このテストを用いて、データ分析の精度を高め、より良い問題解決に繋げることが可能です。 提案の工夫は? 私の業務ではWebマーケティングのような高速な仮説検証はできないものの、提案を行う際には、条件を可能な限り統一したプランAやプランBを提示し、違いを明瞭にするよう努めています。これにより、提案内容をブラッシュアップし、上長の意思決定のポイントを把握することができます。 予算説明の極意は? また、近々、来年度の予算計画について上長に説明する機会があります。その際は、過去のデータの傾向を踏まえて、変動の大きい部分を中心に複数のプランを提示します。プラン間の違いを明確にし、上長の意思決定を理解することで、計画の精度を高めていきたいと考えています。

データ・アナリティクス入門

効果的な仮説立案で施策展開が変わる

仮説立案の重要性とステップ 仮説を考える際のポイントとして、まずは複数の仮説を立てることが重要です。一つに決め打ちせず、複数案を考え、その中から絞り込むプロセスを取るべきです。また、仮説同士に網羅性を持たせるため、異なる切り口で仮説を立てることが求められます。この際、3Cや4Pといったフレームを使うことで、切り口を広げることができます。これらのフレームを定着できるように、繰り返し意識して使用することが重要です。 問題解決と結論の仮説分類 仮説はその目的に応じて、「問題解決の仮説」と「結論の仮説」に大きく分類されます。それぞれ、過去・現在・将来といった時間軸に応じて仮説の中身が変わります。仮説と検証はセットで行うことで、より説得力を持たせることができます。 効果的な施策展開への道 現在、施策展開が乱立している状況を整理し、ハンドリングできるようにしたいと考えています。より効果的かつ効率的な施策展開のためには、仮説を常に意識して立てることが必要です。現状では議論の中である程度のところで決め打ちになってしまっているように思います。より効果的かつ効率的な運営を行うために、問題解決のプロセスに沿った仮説立証を定着させ、日々の業務に意識的に取り入れることが重要です。 フレームワーク活用と効果検証 また、仮説を立てるためのフレームワークについても学び、問題や課題の提起を具体的な施策に関して行います。その際、都合の良い情報になっていないかに留意しながら、データを集めて施策の効果検証を行うことが求められます。効果検証の整理をするためにも、適切な仮説立てとその検証を通じて、施策展開をより効果的かつ効率的に進めていきたいと考えています。

マーケティング入門

エンタメとマーケで見る心の動き

自己紹介で何を感じた? 「自己紹介」のエクササイズで、相手の自己紹介を聞いた際に自分の気持ちを意識するように指示されたことが印象に残っています。確かにこれは、商品やサービスを提供された際に顧客がどう受け止めるかという心の動きと全く同じです。個々のニーズにもよるでしょうが、私は経歴などの客観的なデータよりも、相手の話し方や温度感、表情に引き込まれる傾向があります。一方で、自分では自己紹介を比較的上手くできたと感じていましたが、実は何の根拠もなくそう思っていたことに気付き、フィードバックが重要であることを悟りました。相手がどのように受け止めたのかを把握することは、マーケティングの基本かもしれません。 コンテンツ反応を読み解く? 自分の仕事に当てはめて考えると、提供したエンタメコンテンツがどのように受け止められているのか、その視聴時間数や視聴態度としてのフィードバックを読み解く視点が重要だと感じました。視点によって、浮き彫りになるフィードバックもあれば、埋もれてしまうものもあるでしょう。何を基準に解釈するかは感性も関わるので、感性の磨き方も学びたいと思います。 データで戦略を立てる? 新しい職種へのチャレンジとして、まずはデータの全体像を把握することが必要です。調査方法や測定手法、マトリックスを理解し、何を成功とするのか、その基準を把握することに加え、なぜそれが成功とされるのかを考えます。また、過去の事例において、仮説と結果の差分はどの程度だったのかを知り、戦略を立てる際にどのようにデータを活用するのかを学びます。データがサポートしない新しいことにチャレンジする際は、どのように戦略を立てるのかを考えることが必要です。

戦略思考入門

規模の経済性と季節戦略の活用法

規模の効果はどう考える? 規模の経済性については、一般的には規模を大きくすることでコストが下がると言われています。しかし、実際のビジネスではそれほど単純ではありません。たとえば、原材料を大量に発注してコストを削減しようとしても、保管場所の確保や在庫リスク、そして季節変動などの要因を考慮する必要があります。 大量発注は賢い判断? あるクライアントの会社でも、原材料の値上げ対策として大量発注を検討しましたが、保管スペースの制約や季節商材という特性により、単純に規模を追求するのは適切でないとの判断に至りました。ビジネスの基本原則は、自社の状況や制約を踏まえて適切に活用することが重要であることを、改めて実感しました。 事前策はどうする? この学びを実際のクライアントワークで活用していきたいです。たとえば、原材料を取り扱う取引先が値上げ交渉をしてきた場合、その対応について事後に慌てるのではなく、事前に考えておくことが大切です。具体的には、季節要因を考慮し、工場の稼働率を踏まえたうえで、繁忙期に入る前に大量発注を行うことで、こちらから価格交渉を行うことや、それに伴う在庫管理の懸念事項への対処方法を事前に検討しておくべきです。 データ分析の意義は? 過去数年分の出荷台数や出荷先の企業情報をヒアリングし、紙ベースで管理しているクライアントには、まず情報を整理してデータ化することから始めると良いでしょう。そして、過去の実績を基に時系列分析を行い、季節要因を明確にすることが重要です。繁忙期の存在こそ分かっているものの、月ごとの出荷台数の変動を正確に数値で把握できていない現状をまずは正しく理解することを目指します。

クリティカルシンキング入門

データ分析で「全体像」を掴む技術

全体像はどう描く? データ分析において、状況を明確にするために分解が重要だと改めて感じました。まずは全体像を定義し、その上でデータを鵜呑みにせず可視化することが大切です。これまでの分析ではグラフを十分に活用してこなかったため、今後は積極的に取り入れたいと思います。比率計算を行うことは基本として、これまでの実践が正しかったと確認できた点は良かったです。 どの視点が大切? 分析する際、単に機械的に分けるのではなく、BtoBビジネスでの分析環境を踏まえて、年齢層や学生かどうかといった視点を考慮することが重要です。特徴的な傾向が見えない場合でも、それ自体に価値があることを意識し、様々な切り口から分析を試みることが大切です。こうしたアプローチを通じて、データ分析の精度を上げていきたいと思っています。 仮説の真実は? 私は頻繁にデータ分析を行う立場にいますので、全体を改めて定義し、グラフを駆使しながら多角的にデータを分解してみることに挑戦したいと考えています。また、特定の仮説が正しいか検証するためにも、多様な切り口での分析を継続して行いたいです。現在の業務改善プロジェクトで実践している「プロセス分解」にも、さらに効率的に活用できる方法を追求していきます。 過去と今を比べる? そこで、過去のプロジェクトレビューを計画しています。以前取り組んだ案件のデータを利用し、当時と最近の学びを基にした分析を比較し、効率や分解の質を評価したいと考えています。結論が変わることはないと思いますが、分析時間や分解の質など他に計測できる点を比較し、効率化の可能性を探りたいと思います。適用可能なプロセス分解手法は、今後も活用していくつもりです。

「過去 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right