データ・アナリティクス入門

キャンペーンを成功に導く効果検証術

キャンペーン効果をどう活かす? キャンペーンの効果検証に生かすことができると思います。これまで効果検証を次の施策や会社の計画に反映できていないことが課題でしたが、キャンペーンの結果を本講座の分析法で分析し、そこから見えてくる考察を基に新しい取り組みを提示したいと思います。 商品性の比較はなぜ必要? また、現在部署で新規事業の検討を行っております。その商品性の検討に際して、他社商品を比較することが必要です。分析を行うことで、商品性に取り込みたい要素や難しい要素を明らかにすることができると思います。 課題解決に向けた具体策は? これらの課題に対し、次のことを行っていきたいです。 - WEEK1で学んだ内容の共有 - 分析対象となるものの選定 - 比較対象のピックアップ WEEK1で学んだことは既にチームメンバーに共有しており、メンバー全員が納得した内容でしたので、今後も新たな気づきを共有し、実践の場で活用していきたいと思います。

デザイン思考入門

共感が繋ぐお客様の声のパワー

どう初動で共感? 提案前のニーズヒアリングでお客様のお困りごとを引き出す機会があり、初動の段階での共感が重要であると学びました。購入後のアンケートやインタビューの機会が限られる中、まずはお客様のニーズを理解することがカギであると感じています。 どう言語化が効く? 共感のプロセスを言語化したことで、これまで漠然と行っていた取り組みが明確になり、自身の理解が深まりました。その結果、第三者に自信を持って伝えられるレベルに昇華できたと思います。 現場で意見は聞かれる? また、従来は商品の検証や共感のステップが、現場で実際にお客様の声を反映する機会を欠いたまま、指示に従って進められていました。これにより、現場からの意見が上がりにくくなり、結果として現場力の低下を招いていると考えています。 どう課題を克服する? この課題を解消するため、今後は共感のプロセスに基づくアプローチを一層深化させ、実践的な学びを活かしていきたいと思います。

データ・アナリティクス入門

結果に響くMECE学びのヒント

結果を重視する理由は? 問題解決にあたっては、要因ではなく結果から考える姿勢が大切であると学びました。また、ロジックツリーを作成する際、MECE(漏れなく、ダブりなく)を意識することの重要性も実感しました。特に、厳密さ自体を目的とせず、第3階層程度で異なる要素を加えても構わないという点は、意外性があり印象に残りました。 メール分析のポイントは? 顧客向けキャンペーンメールの分析では、属性をMECEに分類することで、有意差のある項目を見つけ出すことが可能となります。これにより、意味のある仮説が立てられ、有意な差を検証できるA/Bテストの実施につながります。 属性戦略はどんな風に? 今後は、各属性がどのような方法で、どれほどの期間で入手可能かを確認した上で、MECEに分類し、ロジックツリーで整理することが必要だと考えています。このプロセスを通じ、特に注力すべき属性を明確にし、それぞれに応じたメール配信の戦略へと展開していきたいと思います。

戦略思考入門

効率化で時間と売上を生み出す秘訣

経営戦略で何が変わったのか? 現在の会社では、経営戦略の活用により無駄な作業が著しく減ったと感じます。以前は同じ内容を複数の書類に記載するなどの二度手間が多かったですが、今は減らせる作業をどんどん減らしていっています。それにより、顧客への準備時間が確保でき、売上にもつながっています。 仕組み化のメリットとは? 仕組化することも有効だと考えます。例えば、講演会の開催においては、個人によって準備や開催の方法、フォローの取組が様々ですが、最も効率的な方法をチームで検討して仕組化することで、抜け漏れの確認が容易になります。そして、全員が最も効率的な方法を実行できるようになるメリットがあります。 どう仕組み化を進める? この仕組み化を実際に試してみようと思います。まずは、チームの個々の講演会のやり方を聴取し、最短で効果的な方法を抽出します。その後、数人で実施し、検証しながらブラッシュアップしていくことで、最終的に仕組化したいと考えています。

データ・アナリティクス入門

新たな視点で挑む問題解決術

仮説はどう活かす? 今回の学びで、仮説は結論を導くだけでなく、問題解決に役立つ視点としての「問題解決の仮説」が存在することに気づきました。また、仮説には時間軸があることや、複数の仮説を立て網羅性をチェックすることで、偏りのない視点を保つことが大切だと理解できました。 データはどう扱う? また、データ収集においては、新たなデータを集めることに注目する一方で、手元にある既存のデータや一般に公表されている情報を活用する分析が軽視されがちである点に気が付きました。新しいデータの収集は楽しい面もありますが、一方で入手が難しい場合もあるため、状況に応じた柔軟な対応が求められると感じました。 手法はどう広げる? 現在、業務効率化のためにデータ収集を通じて行動様式の検証に取り組んでいますが、今後はデータ収集に限定せず、インタビューやアンケートなど多様な手法を組み合わせることで、より効果的な業務改善を目指していきたいと考えています。

データ・アナリティクス入門

みんなで検証!次の一手へ

一方的打ち手はどう? ABテストの学習を通じ、これまで仮説に基づいて一方的に打ち手を実施してきた方法では不十分であると痛感しました。打ち手をただ試すだけでなく、条件を統一して比較することの重要性を実感し、現行の業務プロセスに問題があると感じるようになりました。 複数打ち手の検証は? また、課題に対しては通常一つの打ち手で対応しており、忙しさの中で次々と新たな打ち手を試す状態になっていました。今後は複数の打ち手を検討し、ABテストの考え方を取り入れたうえで、同一条件下でどちらが効果的かを慎重に比較・検証していきたいと考えています。 多角的視点の探求は? さらに、毎週の採用状況確認のミーティングでは、複数の打ち手を提案することで、先週までの分析手法も組み合わせながら多角的な視点から糸口を探っていく予定です。これを足掛かりに、次のステップに進むための具体的なアクションを模索し、ABテストの実施と継続的な検証を行っていくつもりです。

データ・アナリティクス入門

多重仮説で読み解く医療DXの秘密

複数仮説はどう考える? 今回の学びとして、まず仮説は一つに固執せず複数考えることの重要性を実感しました。複数の仮説を検討することで、偏った視点を修正し、より確度の高い判断が可能になると理解しました。また、仮説立案の際にフレームワークを活用することで、網羅的な視点から仮説を立てることができ、さらに仮説に対する反論を排除する観点も意識するようになりました。 DX進展の理由は何? これらの学びを踏まえ、病院やクリニックのDX推進において見られる、デジタル化やソフトウェア導入の進展が遅い理由について、様々な要因を考慮しつつ、学んだ仮説検証のマインドを活かして問題解決を図りたいと考えています。そのため、まず病院やクリニックの中で特にDXが進んでいる事例を分析し、進んでいる顧客の特性や地域性を、今回学んだフレームワークの切り口(3C:市場・顧客、競合、自社、及び4P:製品、価格、場所、プロモーション)を用いて仮説を立て、分析を進める予定です。

データ・アナリティクス入門

実践で磨く!データ活用のヒント

学びはどんな感じ? これまでの学習を通じて、データ分析の基礎から実践的な活用方法まで、一連の流れを体系的に学ぶことができました。単なるデータ処理にとどまらず、どのように課題を設定し、仮説を立て、検証するかという思考プロセスの重要性を改めて実感しました。 重要な点は何? 学習内容を振り返る中で、自分にとって重要なポイントを再確認することができました。今後は、業務の提案文書作成時に、分析を活用して根拠を明確に示す取り組みを進めたいと考えています。また、日頃から目にするデータがどのように役立つかを意識する習慣を身に付けたいと思います。 次への一歩は? さらに、知識の定着を図るため、学習を終わらせずに統計検定の取得を目指すとともに、業務での分析においては各種フレームワークを適用し、実践で活かしていきます。具体的には、営業店の業務負荷の要因分析を実施し、仮説を立ててデータに基づく検証を行いたいと考えています。

データ・アナリティクス入門

仮説から始まる発見の物語

なぜ振り返りするの? これまでの学びを総まとめする中で、問題解決のステップと仮説志向の重要性を再認識しました。一見当たり前に感じることも、改めて意識することで新たな発見があると実感しています。また、他の受講生の意見に触れることで、自分のアプローチに不足している部分を確認することができました。 有意な検証方法は? もともとの課題として、A/Bテストにおいて有意差が出る仮説を立案する必要があるため、「要素は一つ」「同じ期間で同時に」という基本に加え、仮説を明確にすることを意識したいと考えています。そのため、フレームワークを活用して仮説の幅を広げる取り組みも進めています。 効果的な施策は? さらに、自分が実施するキャンペーンにおいて、コンバージョン向上のために検証すべき仮説をフレームワークを使って洗い出し、その中で最も効果が見込める仮説をもとにキャンペーンを実行・検証するサイクルを繰り返していくことが今後の課題です。

クリティカルシンキング入門

5W1Hで切り拓く新規事業の鍵

--- MECEを意識する重要性 切り口および分析について、常にMECE(Mutually Exclusive, Collectively Exhaustive)を意識して分析することの重要性を整理することができました。特に、導入部分での分析項目の洗い出しにおいて、いかに漏れなく切り口を探るかが検証の鍵であると理解しました。 新規事業企画での試み 現在、新規事業企画を行う部署に所属しており、偏見を持たずに課題を確認し、様々な視点で洗い出しと検証を行いたいと考えています。特に、5W1Hを使用して漏れなく確認し、価値ある人やモノを創出すべきかを見出したいと考えています。 5W1Hを活用すると? 月並みではありますが、5W1Hをしっかり検討しきったかを常に自問自答したいと考えています。分析時はもちろんのこと、客先にヒアリングを行う際にも、どの情報が不足しているかをフレームに照らし合わせて考えたいと思います。 ---

データ・アナリティクス入門

現状把握で切り拓く自分の未来

考えの整理はどう? 総括すると、各工程ごとに自分の考えを丁寧に整理することの重要性を改めて感じました。「いつ」「どの業務が」「なぜ」「どのように」といった観点で整理し、その上で仮説を立て検証することで、具体的な解決策を導き出せると理解しています。 現状把握は何が鍵? まずは、現状を正確に把握することが不可欠です。具体的には、5W1Hの観点から現状を整理し、各工程を定量的に明示することが求められます。また、数字だけでなく現場へのヒアリングを通じ、データと実態に大きなズレがないかを確認していくことが重要です。 仮説検証はどう進む? 重ねて申し上げますが、現状把握を基に仮説を立て、検証するプロセスが鍵となります。仮説を検討する際には、現場担当者の感覚も反映させることで大きなズレが生じないよう確認し、データ整理は目的化せず、解決策検討のための具体的なアプローチとして行動に移す意識を大切にしたいと考えています。

データ・アナリティクス入門

小さな気づき、大きな成長への道

ABテストの条件は? ABテストでは、条件を揃えることの重要性を改めて認識しました。web広告の出稿時、期間は統一していたものの、画像やメッセージなどの要素がバラバラになっていた点は反省材料です。5パターンから2パターンに絞ったときに優位差が出なかったことから、最初から2パターンで検証すればよかったと感じました。今後は、各条件をしっかりとそろえることを最優先に、広告出稿に臨みます。 部下の進捗状況は? 初めてプロジェクトマネジメントに取り組む部下が、全体像の把握に苦労している様子が見受けられます。全体スケジュール表を提出させても、個々の業務に追われ、検討した案を1週間放置してしまうケースが発生し、本人も周囲も内容を忘れてしまったため、再び考え直す必要が生じています。この状況がプロジェクト全体の進捗に影響しているため、今後はプロセスの各段階を理解することを重点的に指導し、円滑な進行を目指していきたいと思います。

「検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right