クリティカルシンキング入門

データ分解で見つける新しい視点

データ分解の必要性は? 今週の学習では以下の点について考察しました。まず、データを分解する際には、さまざまな視点からの切り口を持っておくことが重要です。データの分解方法や細かくするやり方によって、データの見方は大きく変わり、傾向や仮説が立てやすくなります。また、多面的な視点でデータを分解することも必要です。MECE(漏れなく、ダブりなく)を用いて検証することは基本ですが、さまざまな角度から分析することの重要性を感じました。さらに、データの可視化も重要であり、グラフなどを使うことで傾向の見方が大きく変わるため、積極的に用いていきたいと考えています。 業務へどう活かす? これを自分の業務に当てはめると、以下のようになります。データを単に表にまとめるだけでなく、詳細に分解したりグラフ化することで、関連性の洗い出しに役立てられると考えます。具体的には、開発中の製品の物性データ解析を行い、改善に必要な影響因子を洗い出したり、売上と在庫のデータ推移を国やユーザーごとに解析し、仮説立てに活用したりします。また、文章データを整理し、プロセス解析と分類分けによる分析を行います。 分析に多角視点は? データ分析や分解については、自分だけで行うのではなく、他の人にも確認をお願いし、異なる視点や着眼点を参考にして分解のバリエーションを増やすよう心がけます。データを取得する際も、従来の方法にとらわれず、「本当に必要なデータなのか」という視点を意識して行います。過去のデータとの関連性も考慮に入れ、有用なデータ取得を目指します。結果に対しては、「本当か?」といった問いを繰り返し、別の視点での傾向の可能性を確認することも重要です。

デザイン思考入門

小さな試行錯誤で大きく変わる職場

フロア移動の効果は? 仕事では、ちょうどフロアの移動があり、新しいフロアは7階に配置され、総務や経理の部署と共に運営されています。一方、従来は社長室とコンサルタントの部屋が隣接していたため、社長やコンサルタントとの距離が近く、相談もしやすい環境でした。しかし、今回の配置変更により、両者との距離が遠くなり、移動時間がかかるため、相談しにくい状況が生じました。なお、コンサルタント側も同様の課題を抱えており、さらなる改善を望んでいるものの、予算の制約があるという現実もあります。 効率的対話の方法は? このような状況を改善するため、オープンなコミュニケーションを促進することが求められます。具体的には、チャットツールを効果的に活用し、気になる点について積極的にフィードバックを行うとともに、共通の行動ルールを策定する取り組みが考えられます。 試行錯誤の効果は? また、改善のスピードを上げるためには、小さな試行錯誤を重ねることが最も効果的だと感じています。最初から完璧な仕組みを求めるのではなく、実体験から得た気づきを振り返りながら、段階的に改善を試みることで、仲間の理解も深まり、現場での実践や他のチームの巻き込みも促進されると考えます。 ユーザー視点の大切さは? さらに、ユーザー視点に立つことの重要性を再認識しました。これは単に課題を見つけ出すだけでなく、その人の感情や思考、行動パターンまでを洞察し、自分自身が体験しているかのように共感しながら整理する姿勢を意味します。問いが深まることで、新たなアイデアが生まれやすくなり、解決策も一面的ではなく、より多様なニーズに応じられるものになると実感しています。

マーケティング入門

市場を掘り起こす新発見と戦略

ポジショニングはどう? 「誰に売るか?」という問いに対する答えをどのように構築するかを学びました。ポジショニングによって、特定のニーズを持つ消費者に刺さる商品を生み出し、埋もれていた市場を掘り起こすことができるというのは新たな発見でした。また、同じ商品であってもコンテクストが変わることで、新たな価値を新たなターゲットに提案することができるという点も大きな学びでした。多くの最新技術が軍事目的から生まれたことがありますが、使用シーンを変えることで、生活の利便性を高めたり課題を解決したりする技術に変わることも一例と考えられます。しかし、ポジショニングとターゲティングの違いについてはまだ自分の中で明確に理解できていない部分がありました。 セグメントの再検証は? 編成プランを考える際にはまず、ユーザーをどのような軸でセグメンテーションするか考え直す必要があります。性別や年齢といったセグメントが本当にコンテンツ消費に合っているのかを再検証したいと思います。その上で、各セグメントをターゲティングできる企画を持っているのか確認してみたいと考えています。加えて、韓国ドラマコンテンツがなぜこれほどヒットするのか、その消費者の正確な属性(年齢や性別以外の要因)を分析し、韓国ドラマファン層をどう取り込むかについて考えてみたいです。 実行ステップは? 具体的には、志向性でのセグメントが可能かエンジニアや戦略チームに相談したり、消費者インサイト調査チームと協力して志向性別に調査が可能かを検討します。そして、ポジショニングマップを作成し、業界での自社のポジションを把握するとともに、消費者から見た自社のポジションを確認することを目指します。

デザイン思考入門

定性分析で見える現場の真実

定性分析はどう整理? 現在、自社の業務改善のための分析を進める中で、これまで漠然としていた内容が「定性分析」であったことに気づき、大きな発見となりました。業務のやり方は数値で把握しにくいため、現場での観察やインタビューを通じて状況を捉え、得られた情報から実態を明らかにする必要があると感じました。また、コーディングにより一次コード、二次コードと分類し、フレームワークやプロセスに落とし込む方法を実践することで、今後も学びを深めていこうという意欲が湧きました。 顧客課題をどう捉える? 顧客課題仮説の導出は非常に難しいと実感しました。定性分析でコーディングを進める際、観察やインタビューから得られる情報が十分かどうか不安になるとともに、ペルソナやカスタマージャーニーマップの捉え方によって仮説の内容が変わる点も大きな気付きでした。今回の講義で学んだのは、顧客課題仮説を広く捉えるのではなく、焦点を絞り「ユーザー」「状況」「課題」「ソリューション」という具体的な文書化を行う手法であり、その手法は非常に有効だと感じました。 問題本質をどう捉える? さらに、「問題の本質を捉える」から始まり、洞察の整理と可視化、顧客課題仮説の作成、ユーザー中心の視点の維持、そして検証と改善という流れを作ることの重要性を学びました。定性分析では、プロセスやフレームワークの構築により、定量分析で検証すべき仮説が明確になるという点も理解できました。実際の現場での観察からは、ユーザー自身が気づいていない暗黙知に触れることができる有効な手法であることを実感しました。今後はこれらの経験を活かし、顧客に対する課題分析をさらに実践していきたいと思います。

データ・アナリティクス入門

小さな問いから始まる大発見

分析の仮説はどう? 今後は、自社Webサイトのデータ分析において、依頼を受ける側から自ら積極的にABテストやファネル分析の目的、仮説、プロセスを策定し、実施に移す考えです。各プロセスを詳細に分解することで、どのページやどの段階でボトルネックが生じているのかを明らかにし、原因を追及するとともに、具体的な改善提案ができる分析へと進化させたいと考えています。また、日常生活に存在するささいなデータにも目を向け、シミュレーションを繰り返し行うことで、より一層の分析力向上を目指します。 問題をどう特定? 業務の効率向上や問題解決のためには、まず問題を明確にし、その問題がどの段階で発生しているのかを特定することが重要です。具体的には、以下の点を実践していきます。まず、Webサイトだけでなく、日常生活の中で得られるデータも積極的に収集し、「なぜ」を5回繰り返すことで原因に迫る姿勢を持ちます。次に、あらゆる分野の情報収集を行い、同僚とのコミュニケーションを通じてマーケティングの知識も深めます。加えて、依頼された作業にとどまらず、自主的に分析に取り組むことを意識し、課題に対しては目的や仮説を明確に設定し、複数の仮説を立てながら、ファネル分析やABテストの計画を練ります。 改善策の道筋は? さらに、プロセスをより詳細に分解し、各ステップでのユーザー行動(CS行動)を可視化することで、ボトルネックの特定と原因の解明を進めます。分析結果については、同僚と共有し、議論を重ねながら改善策を提案していく予定です。この一連のプロセスを繰り返し実践することで、より実践的な分析力を身につけ、今後の業務に活かしていきたいと考えています。

デザイン思考入門

受講生のリアルな学び物語

HP制作の7つの工夫は? HP制作にあたっては、以下の7つのポイントを意識しました。まずは「S(シンプルに)」で、詰め込みすぎた要望を極力簡潔にまとめることを心がけます。「C(統合)」では、似た内容を整理し、問い合わせなどの情報を一つに統合しました。また、「A(UIUXの模倣)」として、他の優れたユーザーインターフェースやユーザーエクスペリエンスを参考にしながら改善を図り、次に「M(SEOを意識したレイアウト変更)」で検索エンジンを意識したデザインに変更しています。さらに、「P(コンテンツのコラボ)」では、SNSやオウンドメディアと連携させることで、コンテンツの幅を広げています。「E(導線のシンプル化)」により、ユーザーが直感的に操作できるよう配慮し、最後に「R(見せ方と順番の変更)」で情報の提示方法を工夫しました。 ユーザー目線はどう? 特に、SとEの考え方が大切です。会社都合ではなく、常にユーザー目線を重視して、ユーザーが実際に体験しやすいタッチポイントを構築することが求められます。まずはアイデアを十分に発散させ、その後で整理していくプロセスが重要だと考えています。デザイン会社とのミーティングだけでなく、チャットなどを活用して瞬時にアイデアを共有できる体制を整えました。 完璧を求める意味は? 最初から完璧なものを目指すのではなく、大枠で全体の形を作成し、その段階でデザイン会社や社内から意見やアイデアを反映することを繰り返すことで、より良い成果に繋がると実感しています。また、社長向けの言語化には今後も苦労が予想されるため、自分なりの表現を確立し、あまり意見に振り回されないよう努めています。

マーケティング入門

機能を超えた学びの感動体験

商品の体験価値は? 商品の価値は、単なる機能だけでなく、体験や情緒的な要素も含むことを学びました。たとえば、自動車の場合、燃費などの機能的価値と、運転したときの心地よさといった情緒的価値があり、どちらも重要な役割を果たすという点に気づかされました。 差別化はどう実現? また、ある事例を通じ、消費が単なる摂取行為に留まらず、商品が届いたときのドキドキ感や、環境に配慮した取り組みといった情緒的価値が加わることで、他社との差別化が実現され、プロダクト全体の価値が大きく高まることを学びました。 顧客の声はどう? さらに、別の事例では、ユーザーのニーズを詳細に分析し、期待に沿った商品やサービスを提供することで成功を収めた企業の取り組みが印象的でした。ここでは、顧客を意識した考え方が、単なる問題解決を超えて、実際の課題を乗り越えるための大切な要素であることを感じました。 意見交換は大事? 社内では、多様な意見を持つ人々とのコミュニケーションが欠かせません。そのため、フレームワークを活用して説明や意見交換を行うことで、考えを整理し、理解を得ることが容易になると実感しました。同時に、自分自身の思考の偏りに気づく手助けにもなりました。 付加価値は追求? 今や、単にものやサービスを提供するだけでは、利用者に楽しさや感動を与えることは難しい時代です。いかに体験価値や情緒的価値、すなわち+αの価値を高めるかを常に追求する姿勢が求められています。また、ある企業が実店舗での販売先を特定のチャネルに絞り込んだ事例については、メンバー間で意見を交わし、自分自身の考え方との差異を知る良い機会だと感じました。

デザイン思考入門

現場の声から生まれた気づき

インタビューの目的は? 現在、製薬会社でデジタル関連のプロジェクトを担当しています。直近ではリリースしたWebサイトについて、一般ユーザーや医療関係者へのインタビューを実施し、そのフィードバックを改善のためのインプットとして活用しようとしています。ユーザーグループごとに利用方法が異なるため、グループに合わせた質問を準備する必要があります。具体的なプロセスとしては、①ユーザーインタビューの企画、②マーケティングチームへの情報共有、③プロダクトチーム内での対応優先順位の決定、④実装、⑤サイトのPVや滞在時間による成果計測、⑥さらなる対応の実施が考えられます。しかし、これらは予算の確保やインタビュー会社との契約など大掛かりな準備が必要なため、現段階では実践には至っていません。 CRM経験の教訓は? 以前の実践例として、営業で利用されるCRMシステムを担当していた際、現場での実体験がありました。実際に営業の1日を同行し、営業車内でCRMシステムについてのインタビューを行うことで、改善すべきポイントを見いだすことができました。その後、実際の改善対応を進めた結果、別の営業担当者からも好評のフィードバックを得ることができました。 本当に必要なものは? これらの経験から、作りたいものではなく、使う人にとって必要なものを作ることの重要性を実感しました。単に想像するだけではなく、現場を体験することで、何が必要であればより良いかを具体的に理解できるのです。また、体験をしていない人々に共感してもらうためには、インタビュー内容やプロダクト開発に至った背景を分かりやすくまとめることが今後の課題であると考えています。

デザイン思考入門

お客様の声で磨く共感営業術

実体験の壁は何? 営業担当としての立場から、商品の用途上、実際に使用して体験することが難しいためユーザー目線での「共感」を得るのが困難だと感じています。そこで、顧客訪問時の工場見学や商談中のフィードバックを大切にすることが、共感に繋がると考え、今後も顧客訪問を重視していきたいと思います。 感情はどう拾い上げ? 具体的には、現行製品を採用した背景や使用感について詳しくヒアリングし、困っている点に共感できる情報を探ります。また、工場の視察や作業の観察を通じてお客様の感情にも目を向け、課題の発見に努めたいと考えております。こうした取り組みを通して、お客様の思考構造を深く理解し、共感へと繋げたいと思います。 品質トラブルはどう? 粉体塗料の営業活動においては、塗装ムラやハジキなどの不良が発生した際に、前処理の状況や塗装作業方法の見直しが必要との声を多く伺います。また、企業全体では環境対応が重視される一方で、現場ではコスト増加に悩む意見もあります。このような現場の声から、不良発生が少ない安定した製品の提供と、製品の価値を経営視点と現場との間で適切に連携させる必要性を改めて感じました。 共感の鍵は何? 講義では実体験を通じたユーザーとの共感が中心に取り上げられていましたが、営業職としては、お客様の思考構造を理解することが共感形成の鍵だと実感しました。粉体塗料のように使用体験が難しい商材の場合、相手の立場や判断の背景を把握することが、共感への第一歩になると考えます。今後は、様々な方法を状況に応じて使い分けながら、顧客への共感を実践していきたいと思います。

クリティカルシンキング入門

問いに挑む毎日の成長

今の問いは何だろう? イシューとは、今ここで答えを出すべき問いのことです。イシュー設定の際には、「問いの形にする」「具体的に考える」「一貫して抑え続ける」という3つのポイントを意識する必要があります。まずは、問いが何であるかをはっきりさせることが大切です。 全体で課題を共有する? 次に、その問いを常に意識し続けることで、解決すべき課題が見失われないようにします。そして、組織全体でこの問いを共有することで、皆が同じ方向性に向かって課題解決に取り組むことが可能となります。適切なイシュー設定は課題解決の成功に直結するといえるでしょう。 手法で問題を割り出す? また、これまで学んできたロジックツリーやプロセス分解の手法を活用することで、イシューを導き出す方法もあります。例えば、売上構成をロジックツリーで細かく分析し、問題を特定の要素(例えば、客数の少なさ)に収束させるといったやり方が考えられます。 ユーザー心理は理解済? さらに、自社サービスのウェブサイトに訪れたユーザーがどのような課題を感じ、最終的にどのような体験をしているのかについて、ユーザビリティテストを行わずとも自らイシューを見極めることが可能です。ユーザー行動に注目し、どの画面で何がわかりにくいのか、どのような心理を引き起こしているのかを把握することが重要です。 仮説検証の流れは? 具体的な取り組みの手順としては、まずチームで最も解決すべき問題(イシュー)を特定し、そのイシューに基づいてデータを精査します。その後、仮説検証を繰り返すことで、実際の課題や障壁を明確にしていく流れが効果的です。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。

デザイン思考入門

挑む受講生が描く学びの軌跡

どの手法が有効? 私の業務では、主に三つの手法を活用しています。まずA/Bテストでは、メール告知に取り入れる際に、カラーや情報の提示順序などの要素を変更しながら検証を行います。数値化可能なクリック率やコンバージョンの結果をもとに、効果を測定しています。 参加型はどう活かす? 次に、参加型デザインです。アンケートの回答からユーザー視点での改善点を抽出し、定期的に開催するセッションでは、複数のロイヤルユーザーの意見を自由に出してもらいながら改善策を模索しています。 インタビューで何を引き出す? さらに、インタビューも実施しています。購入の動機や使い方を詳しく聞き取り、限られた時間の中でユーザーの意見を引き出すためには、ファシリテーション技術が重要であると感じています。なお、インタビューでは、自分の仮説検証において予想と異なる結果になることも多々あり、大きな声を持つ一部の意見に左右されず、冷静な判断が求められると実感しています。また、求めるデータの種類に合わせて、最適な情報収集手法を選択することも大切です。 デザイン思考はどう磨く? デザイン思考については、明確なゴールが設定されているわけではなく、その時々で最高のものを作るために100%の力を注いでいる状況です。しかし、知れば知るほど「より良いものを」という気持ちが高まり、常にアップデートを重ねていくOSのようなものだと感じています。かつて先輩から「我々が作るものは常にβ版である」との言葉をいただいたことが、決して満足せず成長し続ける意欲に繋がっていると改めて考えるきっかけとなりました。
AIコーチング導線バナー

「ユーザー」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right