データ・アナリティクス入門

変化を捉え、採用戦略の新しい視点を獲得

「分析は比較なり」とは? 「分析は比較なり」という言葉が強く印象に残りました。これまで、分析を行う際にはひとつの情報やデータから何かを導き出そうとすることに注力しがちでした。しかし、適切な対象と比較を行うことが重要であることに改めて気づかされました。データ加工が目的化し、肝心な分析がおろそかにならないよう、「何のための分析なのか」を明確にすることが大切だと学びました。 採用戦略にデータ分析をどう活かす? また、この知見は顧客企業の採用戦略を考える際にも活用できると感じました。顧客が抱える採用課題を解決するためには、現状データ(求職者の動向や志向性など)をもとにボトルネックを分析する必要があります。目標と現状の差を正確に把握するために、今回の学びを活かしてデータ分析を行いたいです。 自分なりの仮説が鍵? さらに、顧客の課題に対して自分なりの仮説を立てること、分析の目的を明確にすることを意識していきたいです。採用市場は日々変化していますが、その変化を「仕方がないこと」と捉えるのではなく、変化の原因や市場の動きを常に考えていくことが重要です。

クリティカルシンキング入門

データが語る組織の新しい一面

データ加工で新たな発見をするには? データを加工することで、その特徴を理解できるようになります。最初は特徴がないように見えるデータでも、分解して可視化することで新たな特徴を発見できます。分解する際には、MECEを意識して多くの観点からアプローチすることが重要です。これにより、データの特徴をより深く理解することが可能になります。 組織の稼働状況をどう可視化する? 私は組織の稼働状況や勤怠状況を可視化する業務をよく行っています。しかし、データの切り口を考える際には、目の前の情報だけに頼ってしまうことが多いです。今回の学習を通じて、切り口を言語化し、応用するための新しい視点を得ることができました。 データ分析に重要な視点は何? データを分解する際には、When、Who、Howを意識して、多くの切り口をまず検討することが重要だと感じました。組織メンバーの業務の偏りを分析する際、これまでは組織毎や案件毎といった切り口で見ることが多かったですが、今後は役割ごと、入社年次ごと、グレードごとなど様々な切り口も加えて分析を行ってみようと考えています。

クリティカルシンキング入門

ピラミッドで魅せる説得術

根拠の整理はどうする? 相手に自分の主張を伝える際には、まずどのような分類で根拠づけができるかを考え、それぞれの分類に対してできるだけ多くの理由を用意することが大切だと学びました。主張と根拠を混ぜず、各分類ごとに整理して提示することで、相手が主張と根拠の関係を理解しやすくなり、説得力を高める効果があると感じました。また、この関係を視覚的に整理するために、ピラミッドストラクチャーというツールが有効であることもわかりました。 観点整理は何が大事? 新しいプロジェクトを発足する際に、作業工数の見積りやスケジュール策定を行い、その根拠を上長に説明する場合、複数の要素をまとめて説明してしまうとわかりにくくなると反省しました。まずどのような観点で理由づけができるかを整理し、それぞれに根拠を用意して観点ごとに説明することで、より理解しやすい説明ができると実感しました。今後同様の業務が発生した場合、ピラミッドストラクチャーを活用して伝えたい内容を整理し、これまでの説明資料と比較することで、自身の説明がどのように変化したかを確認してみたいと思います。

デザイン思考入門

本当の課題はユーザーの声にあり

導入の不安は何? AIなどの新しい技術を自社の業務に導入する際、最適な方法が明確でないことが多く、適当な仮説に頼るだけではユーザーのニーズを十分に捉えられず、導入がうまくいかない事例があると感じました。観察やインタビューを行い、ユーザーが直面している本当の課題を定義することが、根拠に基づいた施策の展開につながるのではないでしょうか。 事前準備は十分? ただし、観察やインタビューを最初に実施する際、聞く内容があらかじめ決まっていないと十分な情報が得られないのではないか、という懸念もあります。一方で、こちらが求める回答にユーザーを誘導してしまう危険性もあるため、フラットな立場でユーザーの本音を引き出し、客観的に分析するプロセスが不可欠だと考えます。 ユーザー視点は大事? 特に、共感を基盤とした課題定義の段階では、ユーザー中心の視点が非常に重要です。業務においては、新しい技術やソリューション自体に焦点が当たり、答えあたりの議論に陥りがちですが、常に解決すべきはユーザーの本質的な課題であることを念頭に置き、施策の検討を進めたいと思います。

データ・アナリティクス入門

仮説で開く未来への扉

仮説の意義は何? 普段は無意識に仮説を活用していましたが、今回改めて仮説について深く考える機会となりました。問題点に対してフレームワークを用いて仮説を立てることで、対応が迅速になるという認識はこれまであまり持っていなかったため、今後はより丁寧に仮説を構築し、その正しさを確認しながら業務に取り組んでいきたいと考えています。 仮説の落とし穴は? 実際に仮説を立てる際、つい思い込みに基づいた仮説になってしまうことが印象に残りました。そのため、クリティカルシンキングを意識し、より網羅的に状況を確認するよう努めます。また、困りごとが発生した場合、ユーザーが直面している問題をフレームワークを活用して洗い出すことも重要だと感じています。特に4Cの視点はこれからも大切にしていきたいです。 施策はどう進める? 新しい施策を検討する際には、4Cを活用して仮説を構築し、その仮説に基づいて必要なデータを収集し、提案へと繋げていくつもりです。データを集める際は、自分のバイアスに左右されず、幅広い視点で情報を整理するよう心がけたいと思います。

マーケティング入門

新しい顧客体験の提案に挑戦してみた結果

新たな体験価値で顧客獲得? 商品とともに新たな「体験価値」を加えることで、顧客へのアプローチ方法が大きく変わると感じました。例えば、カフェでコーヒーの焙煎体験や美味しいコーヒーの淹れ方のワークショップを開くことで、新たな顧客層にアピールできます。また、商品購入時に生産者の名前や農場の知識を提供することで、南米やアフリカなどの労働環境や環境問題への関心を引き出す取り組みも可能です。 地域の関心を集める方法は? 現在の業務に直接適用するのは難しいものの、企業活動に地域の人々の関心を集める方法は見出せると思います。例えば、定期的な季節イベントに参加してもらうことなど、様々なPR方法を利用して企業の新たなブランディングに貢献できるのではないかと考えます。 体験型サービスの需要増加? また、身近な商品や喫茶店で同様の体験価値を提供している事例がないか、探してみる価値があると思います。インバウンド増加に伴う「体験型サービス」の需要は今後高まると予想されるため、機会があればどのようなサービスがあるのか個人的にリサーチしてみたいです。

クリティカルシンキング入門

データで見えた「新たな発見」の重要性

視覚的資料の効果的な使い方とは? 図や表などの視覚的資料を用いることで、内容の理解が促進されることを実感しました。データを分ける際には、最初に大きく分類し、後で細かく分けることで、必要に応じて簡単に異なる切り口に変えられることを学びました。切り口を考える際、自分なりの解釈を持たずに分けることが重要だと感じました。 正確な業務報告のために何を意識する? 業務結果を報告する際、実際の数字やグラフを交えた説明は理解されやすいと感じました。一方で、結論を先に決めてからデータを用意する場合、違うデータが出たときに戸惑うことが多かったです。偏見なくデータを見ることで、新しい結論や発想に至る可能性が広がると感じました。 偏見を排除してデータを分析するには? 偏見なくデータを収集し、そこから得た結論を説明する際、もれなくダブりなく分析することで、より詳細な結論や議論の種となる事項を挙げられるようにしたいです。また、自分や他者が提出したデータを見る際には、もれなくダブりなくなっているか、恣意的なデータになっていないかを意識したいと思います。

デザイン思考入門

失敗も糧に未来への挑戦

プロトタイプの意義は? 自身のプロトタイプ作成を通じて、また他者のプロトタイプを検討する際にも、可能性を排除しない姿勢がいかに重要かを実感しました。同様に、フィードバックの際も前向きなアドバイスを意識することで、その後の可能性が広がると感じています。 新手法は効果的? 新たなトレーニングプログラムの導入、新たな選手の育成方法、さらには試合運営の新しい手法を試みる場合にも、この姿勢は有効です。いきなり完成形を目指すのではなく、スモールスタートから出発し、繰り返し改良を重ねる流れが効果的だと考えます。ただし、生身の選手を対象とする以上、失敗や上手くいかない事態にも備える必要があり、あらかじめ関係者との合意形成をしっかりとおこなうことが重要です。 失敗も学びになる? どの業務においても、「とにかく試してみる」という姿勢と、不明点があれば実践を通して学ぶ姿勢が大切だと感じました。共感や課題の認識、アイディア出しといった基本的なプロセスを経た上でプロトタイプを進めれば、前向きな姿勢で改良を重ねることが成功につながると実感しています。

データ・アナリティクス入門

データ分析で業務効率化の新発見!

データ分析で新視点を得るには? データ分析とは、比較を行うことで新たな視点やアイデアを引き出すことが可能であると学びました。同じ基準や条件を用いることで効果的に分析ができ、新しい発見に繋がることが特に印象的です。 効率化への第一歩は? これまでの仕事では、何となくデータを用いながらプロジェクトの進捗を管理していましたが、新しい職場では積極的にデータの可視化を取り入れ、業務の効率化を図りたいと考えています。以前は過去のデータより直近のプロジェクトの状況にのみ焦点を当てていました。 なぜデータ可視化が重要? 日常業務の中で、業務上必要がない場面でもデータを可視化することは重要だと考えていましたが、既存のシステムやBIツールに頼りがちでした。しかし、自ら業務プロセスをデータ化することが、業務のパフォーマンス向上に繋がるのではないかと考えています。 ダッシュボード作成スキルをどう磨く? 現在は過去のプロジェクトマネジメントの経験を活かし、会社の既存のダッシュボードを一から作成するスキルを身につけるために勉強を続けています。

マーケティング入門

新しい市場開拓に挑む、ポジショニング戦略の妙

ターゲット層で差をつけるには? 同じ商品でもターゲット層を変えることで、これまで取り込めなかった顧客を取り込む可能性があります。その際、自社の強みを2つ挙げることで、他社にはないポジショニングを行い、差別化を図ることが重要です。例えば、ワークマンは職人向けのポジショニングを低価格かつ高機能な製品として一般ユーザーにもリーチしました。 B to B市場での挑戦 B to B業界では、同じ商品を異なる顧客に売るのが難しいと感じます。私の働く建設機械業界では、顧客は土木、解体、産廃などが中心であり、全く異なる業界や一般消費者が顧客になることは難しいです。しかし、B to Cにおいては、ターゲット層を変え、ポジショニングを見直すことで新たな市場を開拓できると思いました。 ポジショニング戦略の可能性 B to Bでは、同じ商品を全く別のユーザーに売ることが難しいと感じますが、ポジショニングはB to Bでも有効な考え方だと思います。まずは業界の中で自社がどのようなポジショニングをしているかを把握することから始めたいと考えています。

データ・アナリティクス入門

4視点で読み解く問題解決のコツ

情報収集の課題は? 収集したデータは、そのままでは問題解決に活かすことが難しいと感じました。なぜなら、目の前にある情報に左右されやすく、都合の良い情報だけを集めて判断が偏ってしまうリスクがあるからです。 問題整理の手法は? また、【What】【Where】【Why】【How】というステップで問題解決を整理する考え方は、非常に効果的だと実感しました。これはデータ分析に限らず、さまざまな事象を体系的に整理する上で役立つ手法です。たとえば、製品企画や業務提案に取り組む際、どの切り口からアプローチするかの起点となるため、有用だと感じました。 提案の差はどう? 最近の新しい業務提案にあたっても、同様に【What】【Where】【Why】【How】で整理する必要があります。ただし、提案内容が【How】だけに偏ってしまう傾向があるため、MECEを意識して全体をバランスよく整理することが重要です。さらに、金額(HowMuch)や期間(HowLong)といった具体的な要素も含めて考えることで、より実践的な問題解決が可能になると感じました。

リーダーシップ・キャリアビジョン入門

リーダーシップ向上のカギは傾聴力

能力と意識の方程式とは? 行動は「能力×意識」という方程式に基づいて成立するということを学びました。この方程式を考慮すると、どの要素が不足しているのかを見つけやすくなります。そして、その足りない部分を伸ばすことで、リーダーシップの質を向上させることができます。 傾聴力をなぜ重視する? 特に、能力の中では傾聴力が重要であると再認識しました。営業所のメンバーとの会議や意見交換、悩みの相談の場では、しっかりと相手の意見を聞くことを心がけたいと思います。自分の意見で解決しようとしがちな癖がありますが、相手の意見を聞くことで新しい考えや思いを知ることができ、それが目標達成において大事な要素となります。このため、相手の意見を受け入れることを意識していきます。 会議での意見の発散方法は? また、自分の意見を述べる前や後には、他のメンバーにも考えを尋ねるようにしています。これは会議でいう発散のフェーズに重点を置くことを意味します。その後で意見を取りまとめ、目標に向かうためのプロセスを明確にし、現場で挑戦していきたいと考えています。

「新しい」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right