データ・アナリティクス入門

4視点で読み解く問題解決のコツ

情報収集の課題は? 収集したデータは、そのままでは問題解決に活かすことが難しいと感じました。なぜなら、目の前にある情報に左右されやすく、都合の良い情報だけを集めて判断が偏ってしまうリスクがあるからです。 問題整理の手法は? また、【What】【Where】【Why】【How】というステップで問題解決を整理する考え方は、非常に効果的だと実感しました。これはデータ分析に限らず、さまざまな事象を体系的に整理する上で役立つ手法です。たとえば、製品企画や業務提案に取り組む際、どの切り口からアプローチするかの起点となるため、有用だと感じました。 提案の差はどう? 最近の新しい業務提案にあたっても、同様に【What】【Where】【Why】【How】で整理する必要があります。ただし、提案内容が【How】だけに偏ってしまう傾向があるため、MECEを意識して全体をバランスよく整理することが重要です。さらに、金額(HowMuch)や期間(HowLong)といった具体的な要素も含めて考えることで、より実践的な問題解決が可能になると感じました。

データ・アナリティクス入門

実務で使える統計の知恵

代表値をどう捉える? 代表値として頭に浮かんだのは平均値と中央値でしたが、実社会では加重平均などさまざまな平均値が活用されている点にあらためて気づき、体系的に学ぶ重要性を感じました。また、標準偏差がばらつきを示すという理解はあったものの、計算方法や2SDルールについては改めて理解を深めることができました。 要因分析をどう活かす? 障害分析の要因分析においては、単に平均値だけを利用するのではなく、取得できる数値情報それぞれの意味を理解した上で、加重平均や幾何平均など適切な手法を用いる必要があると感じました。一方で、分散については現在の業務で具体的にどの局面で利用できるかはまだ明確ではありませんが、基本的な考え方として頭の片隅に置いておくべきだと感じました。 今数値はどう使う? まずは、現在扱っているさまざまな数値を見直し、現状の利用方法が適切かどうかを確認する必要があると考えました。また、まだ導入できていない分散についても、新たに算出することで別の視点が得られる可能性があるため、再度検証する必要があると感じています。

クリティカルシンキング入門

反復学習で見える新たな自分

学習の反復は必要? 反復して学習しなければ、知識が十分に定着しないということを改めて実感しました。常に客観的な視点で物事を捉え、さまざまな角度から問い直すことで、抜け漏れのない理解に努める大切さを学びました。 伝え方の工夫は? また、情報を相手に伝える際には、分かりやすいメッセージを心がけ、グラフなどの視覚資料を活用して資料を作成しています。この手法は、問題や課題発生時の対応、社内ルールの作成と周知、プレゼンテーション資料の作成、部下への指導、不審者訪問時の対策、業務効率向上のアイデア出しなど、さまざまな業務に応用できると感じています。 多角的な検討はどう? さらに、常に客観的な視点で偏らないよう配慮し、イシューの分析においては多角的な視点から検討しています。メンバーの意見を積極的に取り入れることで、より実効性のある判断が可能となり、資料作成においても相手に伝わりやすい工夫を凝らしています。 振り返りの効果は? 学んだことは、必ず振り返りや反復を実践して、自身のスキルとして確実に身に着けるよう努めています。

データ・アナリティクス入門

売上アップの鍵は原因分析と多様な選択肢

課題解決のプロセスとは? 課題解決の近道は、原因をプロセス分解してアプローチすること、そしてボトルネックをきちんと把握することにあると思いました。また、正解がない中できちんとした判断基準を持ち、複数の選択肢を視野に入れておくことが重要です。 売上向上のための出発点は? 売上が上がらない理由の一つとして、ABテストを行わずに出来上がった広告を動かしたことが挙げられます。時間や様々な制約があったとしても、きちんとテストを行うべきだったと再認識しました。この経験から、原因をしっかり考え、複数の選択肢をイメージする必要性を感じました。 リブランディングの展望 現在、リブランディングも視野に入れ、分析や情報の精査をしています。売上が上がらなかった理由はぼんやりと見えてきているものの、説得力には欠けている状態です。これまでの考え方(what、where、why、how)を踏まえながら、原因をプロセスを追って分析していきたいと思います。そして、一つの選択肢に固執せず、複数の選択肢を検討しながら今後の展開に活かしていきたいです。

データ・アナリティクス入門

比較と分析で拓く学びの未来

目的は明確ですか? 分析を始めるにあたって、まず目的と最終ゴールを明確に設定することが重要です。これにより、次に行う比較対象の設定や分析手法の習得がスムーズに進み、上席が判断しやすい情報を提供できるようになります。 比較で何が分かる? 分析の本質は比較にあり、対象を明確にすることが成功の鍵となります。現状では、課題に対する意識はあるものの、十分な分析ができていなかったり、仮説はあるものの分析に着手する時間が取れないという状況が見受けられます。しかし、単に課題を解決するのではなく、事業全体の改善を目指し、情報公開や信頼獲得、認知拡大、ブランディングへとつながる流れを作ることが求められています。 分析の仕組みは? そのため、まずは言語化や情報整理、データ収集と集約を丁寧に行い、その上で効果的な分析を実施する仕組みを確立する必要があります。私のミッションは、組織内の情報を安全に集約・整理し、課題や仮説を明確にした上で、比較対象となる市場の情報と合わせた総合的な分析を行い、意思決定のために適切な報告体制を整えることです。

クリティカルシンキング入門

データ分析で実感した新たな視点の必要性

刻み幅の切り方はどう? データの傾向を把握するためには、「刻み幅の調整」が重要です。刻み幅によって、データの分布がどのように見えるかが変わるため、機械的な方法ではなく、どのように切ることで特徴が見えやすくなるかを仮説を立てて試みることが大切です。また、手元にある情報だけで判断すると視点が偏りがちなので、目的意識を持つデータ取得も必要です。 アンケート設計はどう進める? 今後、アンケート調査などを設計する際には、データの切り分け方を検討する際に役立てたいと思います。課題や事象の分析では、解釈の羅列ではなく、観点となる切り口を意識して情報を分解し構造化することが有効です。A for not Aの発想も活用できます。 定性情報はどう扱う? 業務においては、定性情報の示唆を分析する局面が多くあります。具体的には、プロジェクトのボトルネックの特定や、意思決定に影響を及ぼす要素の分析において役立てたいと考えています。ただし、定性情報を分解する際には、MECE的発想が必要かどうかを見極めたうえで活用することが重要となります。

データ・アナリティクス入門

データ分析で学び得た具体的な手法とは?

分析の心得から具体例へ これまでは主に分析の心得に関するマインドセットを学んできましたが、今週からは具体的な分析手法についての講義が始まりました。平均値が極端な数字(はずれ値)によって大きくぶれる可能性を知っていたものの、中央値を具体的に説明できる計算式が非常に参考になりました。 データビジュアライゼーションの活用法 現在、データビジュアライゼーションに取り組んでいるため、代表値と分布をうまく使って視覚的に「伝わる」図を作りたいと思っています。そのため、標準偏差と分布の使い分けも重要です。どの要素の数値を組み合わせるかという「切り口」が非常に重要だと感じています。 定性的と定量的の融合をどう図る? さらに、アウトプットの質と量が重要であるため、あらゆるデータに対して「分析できないか」という視点を常に意識しています。仕事上、定性的な感覚を重視していますが、そこにデータなどの定量的な裏付けを加えることが大切だと感じています。数値情報の取得が可能かどうかがネックになることが多いというのが、私の経験上の課題です。

戦略思考入門

俯瞰力を鍛え、戦略的思考を手に入れる

俯瞰する力を磨くために 常に俯瞰して物事をとらえる必要があると感じました。キャッチフレーズ、多角化、アプリ導入などの事例を通じて、当事者になると目の前の事象や自身の経験に基づいて判断しがちですが、一歩引いてフレームワークを利用し、しっかりと分析・検討することの重要性を学びました。 気合だけでは足りない? 日々の業務では、営業目標達成のための戦略立案において、現状・市場・社内の分析をしっかりと行い、全体を把握した上で戦略を立てていくことが必要です。どうしても気合論に陥りがちですが、具体的にするために外部分析や個人の分析を行います。 未来を見据えて情報収集 日々、全体をつかむための情報入手に注力したいと考えています。様々なリソースを駆使して行動し、国内外の動きに敏感になり、今後市場がどのように変化するかを常に意識して行動することが重要です。また、部のメンバーにもそのような視点を持ってもらえるような仕組みを考え、取り入れていきます。まずは危機感の醸成を試みます。

クリティカルシンキング入門

多角的視点で魅せる学びストーリー

根本原因を捉えるには? 論点や課題、問題の根本を捉えるためには、多角的な切り口からの分析が必要です。グラフなどの視覚資料を工夫して用いることで、データが一目で理解できるように整理すると良いでしょう。分析結果をもとに、的を射た対策を慎重に検討する姿勢が求められます。 問い合わせは何故? たとえば、社内からの問い合わせが多く業務効率が低下している場合、その問い合わせ内容を詳細に分析し、そもそも情報の周知不足なのか、マニュアルが分かりにくいのかといった根本的な原因を明らかにする必要があります。 結果伝え方はどう? さらに、さまざまな視点から問題や課題を分析し、真の原因を把握することが大切です。そして、得られた分析結果を、相手に分かりやすく伝えるためにメッセージ文を十分に検討して作成することが効果的なコミュニケーションへとつながります。 グラフ作成の工夫は? また、グラフ作成にあたっては、結果が直感的に理解できるようにレイアウトやデザインを工夫し、見る人が情報をすぐに把握できる表現にすることが重要です。

クリティカルシンキング入門

振り返りから学ぶ分析力の磨き方

比率とロジックツリーの活用方法 ある事象の分析に際して、比率を用いて深く調査でき、その後、ロジックツリーを活用してさらに詳細に研究することができました。特に重要だと感じたのは、表を作成することで、多角的な視点から情報を確認できる点です。この学びを生かし、今後も正しい方向性を考え、さらなる学びを続けたいと思います。 相続関連業務の需要とは? 新たな業務提携企画にこの知見を活用していく予定です。相続関連業務、例えば相続対策や事業承継の分野では、外部環境の分析や需要の増加が求められるようになっています。また、遺言に対する顧客の抵抗も減少傾向にあります。ある程度のマニュアルを作成し、それを分かりやすくまとめることが目標です。 新業務企画の進捗はどこまで? 新業務企画の大枠を設定し、ロジックツリーを描きながら不足部分を補完する試行錯誤を繰り返しています。今週中に新しい業務企画の合意書を完成させたいと思います。また、複数の表を作成し分析を行い、MECE(もれなく、ダブりなく)の原則を心がけて日々取り組んでいきます。

データ・アナリティクス入門

見える数値が導く新たな発見

数値の見直しは? 昔から用いられている数字の指標は、単一の平均値で表現されることが多いため、別の数値の捉え方をすると、販売手法を変更した際に新たな発見や結論が導かれると感じました。 可視化の意義は? 最近はデータ量が増えたことで、可視化にあまり重点を置かなくなっていましたが、見えるものから得られる情報も、適宜プロセスに組み入れると有用だと思います。 評価視点を変える? 自分が現在行っているパフォーマンス指標についても、どの視点で実績を評価しているのかを意識し、他の数値の読み解き方が可能かどうか確認し、日々の業務に役立てたいと考えています。特に、これまで使用してこなかった幾何平均や中央値については、意識して活用するようにしたいです。 データ活用方法は? また、商品実績の追跡は頻繁に行っていますが、カスタマーデータの分析は十分ではなかったため、カスタマーデータを改めて商品実績の分析に生かすことで、より多くの情報が得られるのではないかと考え、本日学んだ内容を業務に活かしていく所存です。

データ・アナリティクス入門

仮説×分析で広がる学び

最初の目的は何? 分析に対して明確な目的意識を持ち、初めから仮説を立てるというプロセスは非常に実践的で役立ちました。最初に結論の方針を定め、その上でデータ収集を進める手法は、後の分析をスムーズに導いてくれると実感しています。 データ分解の意味は? また、データを分解し、得られた情報をさらに細かく吟味してストーリー性を持たせる工夫も印象的です。仮説の過程や構成要素を記録しておくことで、最終的な結論と照らし合わせながら再確認するプロセスも納得できるものがありました。 なぜ比較が必要? 加えて、複数の対象者から得られる情報において数を揃えて比較をするという点は、分析結果を信頼性の高いものにするための大切なポイントだと感じました。これにより、結論を支える根拠が一層明確になり、聞き手が納得しやすい資料作りが可能になっています。 学びの意義は何? 全体として、仮説に基づいたデータ収集と詳細な検証、そして論理的なストーリーの構成という一連の手法は、現実の業務においても非常に活用できる貴重な学びとなりました。

「分析 × 情報」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right