クリティカルシンキング入門

多角的視点で魅せる学びストーリー

根本原因を捉えるには? 論点や課題、問題の根本を捉えるためには、多角的な切り口からの分析が必要です。グラフなどの視覚資料を工夫して用いることで、データが一目で理解できるように整理すると良いでしょう。分析結果をもとに、的を射た対策を慎重に検討する姿勢が求められます。 問い合わせは何故? たとえば、社内からの問い合わせが多く業務効率が低下している場合、その問い合わせ内容を詳細に分析し、そもそも情報の周知不足なのか、マニュアルが分かりにくいのかといった根本的な原因を明らかにする必要があります。 結果伝え方はどう? さらに、さまざまな視点から問題や課題を分析し、真の原因を把握することが大切です。そして、得られた分析結果を、相手に分かりやすく伝えるためにメッセージ文を十分に検討して作成することが効果的なコミュニケーションへとつながります。 グラフ作成の工夫は? また、グラフ作成にあたっては、結果が直感的に理解できるようにレイアウトやデザインを工夫し、見る人が情報をすぐに把握できる表現にすることが重要です。

クリティカルシンキング入門

振り返りから学ぶ分析力の磨き方

比率とロジックツリーの活用方法 ある事象の分析に際して、比率を用いて深く調査でき、その後、ロジックツリーを活用してさらに詳細に研究することができました。特に重要だと感じたのは、表を作成することで、多角的な視点から情報を確認できる点です。この学びを生かし、今後も正しい方向性を考え、さらなる学びを続けたいと思います。 相続関連業務の需要とは? 新たな業務提携企画にこの知見を活用していく予定です。相続関連業務、例えば相続対策や事業承継の分野では、外部環境の分析や需要の増加が求められるようになっています。また、遺言に対する顧客の抵抗も減少傾向にあります。ある程度のマニュアルを作成し、それを分かりやすくまとめることが目標です。 新業務企画の進捗はどこまで? 新業務企画の大枠を設定し、ロジックツリーを描きながら不足部分を補完する試行錯誤を繰り返しています。今週中に新しい業務企画の合意書を完成させたいと思います。また、複数の表を作成し分析を行い、MECE(もれなく、ダブりなく)の原則を心がけて日々取り組んでいきます。

データ・アナリティクス入門

見える数値が導く新たな発見

数値の見直しは? 昔から用いられている数字の指標は、単一の平均値で表現されることが多いため、別の数値の捉え方をすると、販売手法を変更した際に新たな発見や結論が導かれると感じました。 可視化の意義は? 最近はデータ量が増えたことで、可視化にあまり重点を置かなくなっていましたが、見えるものから得られる情報も、適宜プロセスに組み入れると有用だと思います。 評価視点を変える? 自分が現在行っているパフォーマンス指標についても、どの視点で実績を評価しているのかを意識し、他の数値の読み解き方が可能かどうか確認し、日々の業務に役立てたいと考えています。特に、これまで使用してこなかった幾何平均や中央値については、意識して活用するようにしたいです。 データ活用方法は? また、商品実績の追跡は頻繁に行っていますが、カスタマーデータの分析は十分ではなかったため、カスタマーデータを改めて商品実績の分析に生かすことで、より多くの情報が得られるのではないかと考え、本日学んだ内容を業務に活かしていく所存です。

データ・アナリティクス入門

分かると変わる!シンプル分析のすすめ

何がわかったら購入? パソコンを購入する際に、何を調べ、どのような情報が得られたら購入に踏み切るかという問いかけから、データ分析における「分析」の意味が明確になったと感じました。「分析」というと堅苦しくなりがちですが、「何がわかったら購入するか」というシンプルな視点を常に意識したいと思います。 意思決定のヒントは? 現状、組織全体でデータを活用して意思決定を行う文化が十分に根付いていないため、「何がわかったら◯◯するか」という観点を直接業務に取り入れるのは難しい印象を受けました。しかし、この視点を意識しながら業務を進めると、必要なデータや情報に気づく機会が増えると考えています。 新規事業の目的は? また、現在企画中の新規事業においても、「何が分かったら◯◯するか」という目的設定を明確にすることが重要だと感じています。特に、地域におけるアンコンシャス・バイアスの解消を目指す事業においては、目的が不明瞭な部分があるため、その課題解決の有用性をデータに基づいて説明できるようにしていきたいと思います。

データ・アナリティクス入門

仮説で開く成長の扉

仮説の軸どうする? 仮説を考える際は、一定の軸を持って行うと思考が整理され効率的です。例えば、4P(価格・場所・商品・プロモーション)や3C(顧客・競合・自社)などのフレームワークを活用することで、仮説が一点に偏らず、全体を俯瞰して検討できます。 効果検証のポイントは? また、デジタルマーケティングの効果検証においては、訴求メッセージが狙った対象に適切に伝わっているか、費用対効果が十分か、媒体ごとの違いがあるかなどを意識して仮説を立てることが重要です。ターゲット設定が正確かどうか、その情報が購買に結びついているかという点も、明確な仮説設計を通じて再確認する必要があります。 購買行動の見極めは? さらに、購買データに基づき、どのイベントが発生したときに購買に結びつくのかを意識しながらデータを整理することで、仮説シナリオを構築します。その上で、ターゲットを明確に定め、手元にある各種レポートや分析ツールをもとに、メッセージが本来届くべき相手にしっかり伝わっているかを検証する方法が求められます。

マーケティング入門

多角的学びで経営に挑戦

提案はどう説得する? マーケティングプランを加えた提案は、納得感を高めると実感しています。さらに、ファイナンスやアカウンティングなどで全体の状況を網羅することで、意思決定者の立場からの提案が可能になると感じました。 データは十分かな? マーケティングは顧客重視のため、定量化が難しい面があります。そのため、データの収集と分析力を向上させる経験を積む機会を大切にしていきたいと思います。 業務提案はどう見る? 新規業務提案にもこの考えを活かし、将来的な起業も視野に入れた上で、短期と長期の仕組み作りを重視します。大手の事例だけでなく、中小企業の成功例や失敗例にも学ぶために、書籍や動画サービスを通じて継続的に情報を取り入れる習慣を続けていきます。 書籍の読み方は? また、購入した書籍は全て読むのではなく、目次やダイジェストを参考にして本質を見極め、必要な部分を深く読み込むように工夫します。グロービス終了後も、時間を有効に活用して学習を継続し、部署内でのアウトプットの機会を通じて知識の定着を目指します。

データ・アナリティクス入門

目的明確で築く確かな結論

分析目的は何? 分析の目的を明確にすることは非常に大切です。何のために分析するのか、その目的をはっきりさせた上で、比較対象を可能な限り条件を揃えて行うことで、有益な分析結果が得られます。結果として、比較のためのデータ収集が重要なプロセスとなり、その積み重ねが有意義な結論に結びつきます。 品質管理はどうする? また、品質管理の業務においては、障害の原因分析や発生した障害に対する対策の有効性を検証する際にも、この手法が有効です。分析の目的が既に明確であれば、次に課題となるのは、比較対象となるデータの選定と収集です。その際、これまでの経験を踏まえ、しっかりと仮説を立てながら進めることが、正確で有意義な結論を導くポイントとなります。 仮説作成はどう進む? さらに、仮説を立てる場合は、個人の経験や知識だけに頼るのではなく、周囲の知恵や知識を共有して取り入れることが重要です。関係者との情報のやり取りが、より有効なデータの選定と収集につながり、最終的には信頼性の高い結論を導き出すための大きな助けとなると考えます。

データ・アナリティクス入門

平均に惑わされない分析術

平均値では捉えきれない? データ分析の学びを通じて、平均値だけでは捉えきれない情報があることや、平均値そのものにもさまざまな種類が存在するという新たな視点を得ました。また、データの散らばりを正しく理解する必要性や、単調な棒グラフや円グラフ以外のビジュアル化手法にもそれぞれのメリットがある点を、具体的に理解することができました。 どの指標を選ぶ? これまでの分析では平均値に頼りがちでしたが、目的に応じて加重平均や幾何平均、あるいは中央値といった他の指標も活用すべきだと強く感じました。今後は、分析の目的に沿って適切な手法を使い分け、より的確なデータ解析を目指していきたいと思います。 SNS分析で何が見える? さらに、SNS系のコンテンツについては、年齢層や性別ごとのリアクションの違い、これまでのフォロワー増加率から今後の成長をどのように予測できるのかといった点について、より詳細な分析が求められると実感しました。今後は、こうした視点も取り入れて、より充実したデータ分析に努めていきたいと考えています。

戦略思考入門

顧客視点で差別化!戦略的アプローチ

なぜ顧客目線が大事? 差別化を考える際には、まず顧客の視点が重要であることを学びました。簡単な施策では競合他社も同様のことを実行している可能性があるため、競合の動向をリサーチすることも必要です。差別化を実現するために、3C分析やVRIO分析などのフレームワークを活用し、実現可能かつ持続可能な方策を考えていきたいと思います。 ターゲットは誰? まず、ターゲットを明確にすることが重要です。施策の対象となる顧客が誰なのかをはっきりとさせます。そして、競合他社のリサーチを行い、彼らの特色や優位性を理解することが必要です。 報告はどうまとめる? これらの情報を基に、フレームワークを用いて実現可能な施策を考えていきたいと思います。まずは業界全体の特色を整理し、その中で自社の特色や優位性を理解し、まとめていきます。広い視野で業界を先読みし、市場分析を行うことで他社との差別化を図り、経営会議で報告できるようにしたいです。報告資料には十分なエビデンスを含め、経営層が納得できる内容にしたいと考えています。

データ・アナリティクス入門

新しい方法論で業績アップを狙う!

分析の重要性とは? 今週の学習で重視したポイントは、分析は比較であるということです。また、「Apple to Apple」を意識し、適切な比較要素を抽出することも重要です。過去の方法が最善だったのか、新たな方法論があるのか、今後の講義を通じてさらに学びを得たいと考えています。 業績分析をどう活用するか? 私は、自部署の業績分析や戦略策定にこの学びを活用しようと考えています。新規案件の獲得状況や既存案件のプロジェクト収支など、必要な情報を精査し、分析を進めたいと思っています。この分析を基に、新規提案活動、適切なリソースの配置、社員教育など、部門運営の戦略立案に役立てることを目指しています。 情報収集の方法は? はじめに、営業部からのパイプライン情報の共有、リソース計画、メンバーの稼働率、プロジェクトステータス、メンバーのスキルマップなど、各方面からの情報収集を徹底することが必要です。これらの情報を活用し、現状の組織における問題点を把握し、効果的な戦略策定につながるよう努めたいと考えています。

データ・アナリティクス入門

リアルな声が紡ぐ成長ストーリー

グループワークで何が学べた? グループワークを意識して課題に取り組む中で、学びの深さが増すことを実感しました。同じ問題に直面しても、それぞれ異なる思考プロセスが生まれる点に大変興味を抱きました。 ライブ講義で何が起きた? 久しぶりに参加したライブ講義では、皆さんのチャットでの回答を楽しみながら、以前よりも積極的に意見を発信することができたように感じています。 考え方の違いはどう? また、様々な考え方や感じ方が存在するため、分析の目的を明確にし、チーム内で思考プロセスを共有しながら進める重要性を再認識しました。直近の出来事をすぐに忘れてしまう傾向を考えると、記録をしっかりと残すことが大切だと感じました。 記録整理は本当に必要? そのため、今後は毎回、分析の計画表を作成し記録することを意識します。Excelへのコメントだけでは後から内容が断片的に感じられることもあるため、チームメンバーと共に計画表のテンプレートを検討し、全員が情報を整理して共有できる仕組みを整えていきたいと思います。

データ・アナリティクス入門

数値分析で掴む学びの一歩

数字の意味は? 数字だけが羅列されているデータは、そのままでは意味を把握しづらいと感じました。データを適切に加工することで、理解が深まると思います。 数値の分析法は? 数値の分析にあたっては、代表値や散らばりに注目する必要があります。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、それぞれの状況に合わせた選択が求められると感じました。 年齢層の傾向は? また、コミュニティ内の受講生の年齢層を考える場合、単純平均だけでなく、中央値や散らばりも分析することで、どの層にアプローチすべきか、またはまだ十分に届いていない層に合わせたサービス展開を検討できると考えました。 情報収集はどう? 現状、年齢データを明確に把握する手段がないため、まずはアンケートの実施や入会時のデータ取得を通じて、年齢情報の収集が必要です。さらに、退会者数についても、単なる人数の推移のグラフではなく、どの時期に退会率が高いのかといった散らばりも視覚化することで、より具体的な分析が可能になると思います。

「分析 × 情報」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right