アカウンティング入門

「会社の健康状態を見抜く方法を学んで」

B/Sの構成を理解するには? B/Sの構成がどうできているのか、得たお金の使い道などが理解できました。資産、負債、純資産が記載されており、「会社の健康状態」という言葉がすごくしっくりきました。「見方」として、流動資産、固定資産、流動負債、固定負債、純資産の5ブロックに分かれているバランスが重要で、私がB/Sから読み取りたい「相手方の経営状況」がここから読み取れると理解しました。細かい部分は理解しきれていない所も多く、次週の学習で理解を深める予定です。 リスクの程度をどう知る? WEBから入手できる情報でまずは負債の情報を見て、そのリスクの程度を知ろうと考えました。また、自社の情報を見て、他社との比較を行い違いがどこにあるのか、また自社のお金の使い道を把握することで、今後どうしていくべきかの仮説を立ててみようと考えました。 自社と他社の比較分析 具体的には、次のことを行いたいです。まず、WEBからの情報を入手し分析すること。そして、自社情報の分析も行います。リスクの程度を知り、自社と他社との相違点を見つけ、改善ポイントを見つけて改善案を考えることが重要です。最後に、この結果を経理部門と共有し、B/Sの読み方や考え方が間違えていないかを確認する機会を準備します。

戦略思考入門

学びの5週間で変わった視点と成長

情報整理はどう進む? 5週間にわたる学びを振り返ると、自分に足りないフレームワークを活用できるようになったことが、情報整理と環境理解に繋がったと実感しています。また、「捨てる」ことに対する後ろめたさを感じていましたが、実際には顧客に判断しやすさを提供することに繋がるという、新たな考え方に衝撃を受けました。さらに、差別化に関しては、単に他がやっていないことをするのではなく、模倣が難しく継続可能なものかを見極めることが重要だと再確認しました。 業務の本質は何か? 多くの新たな業務を引き継ぐにあたり、これまでの方法を単に踏襲するのではなく、なぜその業務をするのか、その本質を理解し、自分自身で一から考え直す姿勢を持ちたいと思います。この理解を深めるために、情報を整理・分析し、「この状況だからこそ必要だ」と周囲に納得してもらえる説明を心掛け、同じ目標に向かって業務を進めたいと考えています。 信頼関係はどう築く? 事業収益管理という業務の特性上、さまざまな部署と関係を築きながら業務を遂行する必要があります。関係構築においては、相手が納得できる話をすることが大切です。そして、その方法が効率的であるとお互いに認識し、実際の行動に結びつけられるように努めていきたいと思います。

戦略思考入門

フレームワークで見つける新たな視点

フレーム活用の効果は? フレームワークを活用することで、漏れなく効率的に検討を進められることを再認識しました。特に、フレームワークを皆で習得することで、メンバー間で共通の言語を使って会話ができる点が大きな利点だと思います。以前は3CやSWOT分析、バリューチェーン分析などの基本的な分析をしないままに戦略を立てようとしていました。しかし、まずは自分自身で実践し、手を動かして考えることが必要だと感じました。 情報不足の理由は? 3CやSWOT分析を行うためには、業界や他社の情報がまだ不足していると感じているため、これから地道に情報を収集していきます。一方、バリューチェーン分析に関しては、自分の所属する部署に限定して分析するのも良いかもしれないと考えました。このフレームワークは、どこに人材と資金を投入すべきか判断し、経営陣からの合意を得る際に非常に有効だと実感しました。 実践から何学ぶ? 具体的なアクションとしては、まず3CとSWOT分析を試してみて、空白部分を明らかにし、見えていない点や情報不足の箇所を洗い出します。また、自チームのバリューチェーンを描いて、同僚や上司と共有し、フィードバックをもらいながらブラッシュアップしていきたいと考えています。

アカウンティング入門

プロが教える株式投資の第一歩

貸借対照表の読み解き方は? 企業業種によって貸借対照表には特徴があり、その特徴を読み取ることで、企業がどのような事業形態でビジネスを行い、どこにお金がかかっているのかを理解することができます。また、企業の流動負債比率を見ることで倒産リスクを評価することができるため、貸借対照表はリスク評価に有用です。 株式投資における分析の重要性 私の業務では貸借対照表を見る機会は少ないかもしれませんが、自分の研鑽として株式投資をするにあたり、貸借対照表を用いた企業分析が重要であると感じています。そのため、闇雲に投資するのではなく、貸借対照表を分析するサイトなどを活用しながら、投資を楽しく続けていきたいと考えています。 投資プロセスのステップは? 今後、新たに株式投資を追加する予定があるため、まずは興味のある企業をいくつかピックアップし、貸借対照表を確認することから始めたいと思います。具体的には次のステップを考えています。 - 新規投資先の選定(興味のある企業をピックアップ) - 企業のHPに掲載されているIR情報の読み込み - 直近の株主総会の報告書を見て将来の展望を理解 - 実際に投資 このプロセスを通じて、より賢明な投資判断ができるよう努めたいと思います。

クリティカルシンキング入門

分解でひらける!業務改善の秘訣

分解の意義は? 物事を分解する重要性について学び、状況の解像度が上がり、どこに問題が潜んでいるかが見えやすくなることを実感しました。問題解決にあたり、全体をそのまま捉えるのではなく、各部分に分けて考えることで、より明確な対策が立てられると感じました。 データ分類は何で? 特に、データを仮説をもって分類し、どの切り口で分ければ自分が知りたい情報が明確になるのかを考えるプロセスが印象的でした。層別分解、変数分解、プロセス分解といった具体的な手法を学ぶことで、実際の業務においても、売上やクライアント提案、SNSなどのデジタルメディア戦略に応用できると感じました。 どの対策が有効? 実際の事例として、例えば自分や担当媒体の売上分析において、売上構成を細分化して傾向をつかむと、具体的な対策案をいくつも立てられることを学びました。また、クライアントへの提案では、ありたい姿を数字で設定し、その後、どの変数が大きな影響を及ぼしているかを分析することで、より説得力のあるプランが構築できると実感しました。 実践への自信は? 今回の学びは、単なる理論にとどまらず、自社メディアの成長や日々の業務改善にも直結する方法論であり、今後の実践に向けた大きな自信につながりました。

戦略思考入門

取捨選択で磨く未来の軸

優先基準は何だろう? 今週のテーマは「取捨選択」であり、優先順位を上げるべきものや見送るべきものを判断するためには、情報収集と分析が不可欠であると実感しました。その上で、次に何を重視するかという軸を明確にすることも重要です。また、ビジネス環境や自社の状況は刻々と変わるため、定めた軸に沿って定期的に状況を見直し、ヘルスチェックを行いながら方針を更新する必要があると感じました。 AI進化の影響は? さらに、生成AIやAIエージェントの進化に伴い、自社事業への影響が大きくなっている現状を踏まえると、リソースの配分や断念すべき部分の判断を迅速に行う必要があります。その上で、部下への指示や壁打ちの場面でもこれらのツールを効果的に活用できると感じました。世間のブームや期待感に流されることなく、冷静な情報収集を基に自部署の方向性を見定めることが重要です。 現状の課題は何? 現状では、自部署の課題に注目しすぎて、モグラ叩き的に個別の対策を講じている状況です。そこで、周囲の環境や社内の状況を改めて整理し、どの事業に注力すべきかを明確にすることが求められます。また、慣例的に続けている効果や効率が低い業務を見直し、効率化や中止の判断を行うべきだと考えています。

データ・アナリティクス入門

現場を解剖!数字と直感のコラボ

見えるギャップは何? データ分析では、目についた情報にとらわれやすく、都合の良い解釈に陥るリスクがあると感じました。しかし、What / Where / Why / Howの切り口で数値同士を比較し、実際の現場で何が起きているのか確認することで、あるべき姿と現状のギャップを明確にし、解決への道筋を意識することが大切だと学びました。 KPI設定の真意は? また、サイト分析におけるKPI設定では、ロジックツリーの考え方を活用して全体を俯瞰し、各階層に分解するMECEを意識したアプローチに新たな気づきを得ました。こうした手法は、課題解決や売上、集客の分析においても非常に有用だと考えています。 具体分析の切り口は? さらに、現在取り組んでいるECサイトのデータ分析では、感度の良い切り口を増やし、より具体的な分析を行いたいと思います。クライアントのサイト課題をあぶり出し、ロジックツリーに落とし込むことで、強化すべきポイントを整理する作業に役立てていくつもりです。 今後の施策は? 引き続き、現場の状況確認を踏まえながら、What / Where / Why / Howの視点とMECEを意識して分析を進め、課題解決に向けた具体的な施策を模索していきます。

データ・アナリティクス入門

仮説とデータで進む成長の一歩

データ分析の意義は? データ分析そのものが目的ではなく、What・Where・Why・Howの各ステップに沿って、イシューの設定、問題の特定、原因の分析、そして解決策の構築まで進めることの重要性を学びました。 課題解決の要点は? また、課題解決とは現状のマイナス面を正常に近づけるだけでなく、将来のありたい姿に向けた戦略を立てることも含まれている点が新鮮な発見でした。 なぜ提案が浅く? 内部監査の担当として実務を行う中で、課題の特定までは進むことができても、真の原因分析が困難で、改善提案が表面的になってしまうことが多いと感じています。今後は、原因をより深く掘り下げ、具体的な改善策を提案できるように努めたいと思います。また、提起する課題が現状の問題解消を目指すものなのか、将来のビジョンに向けたものなのかを明確に区別して提案できる力を養うことも目標にしています。 仮説検証のプロセスは? What・Where・Why・Howの各場面で仮説を立て、その仮説をデータ分析により検証するプロセスを確実に実行したいと考えています。データ分析だけに留まらず、その他の情報も収集しながら、より深い原因分析と効果的な改善提案ができるよう、引き続き努めていきたいです。

データ・アナリティクス入門

分析と比較で成果を最大化するヒント

分析には何が必要か? 今週は、「分析には比較や目的設定が重要であり、条件を揃える必要がある」という内容を学びました。確かにそうだと思う内容が多く、これらのポイントは今後も常に忘れないようにしたいです。 新たな知識の発見 一方で、LIVE授業を通じて新しい知識も得ることができました。定量分析に定性分析が加わることや、平均にするべき数字と平均にしないほうが良い数字など、目的によって異なるという点が特に興味深かったです。 クライアント提案時の比較 クライアントへの提案時には、広告効果を伝える必要があります。他社や過去の結果と比較し、より効果があることを示したいです。また、自身の営業計画を立案する際にも、過去の実績や先輩の成果と比較し、達成の共通点を探りたいと思います。 上長との振り返りで何を確認する? まずは上長と今回の学びを振り返り、クライアントへの提案で話せるように比較ポイントを洗い出したいと思います。上長と取りこぼしがないか確認し、その後で必要な情報を集めます。さらに、四半期ごとの計画立案時には、自分の達成した成果と比較し、成功のポイントを明確にしたいです。また、達成傾向にある先輩と比較することで、さらなる成功の糸口を見つけたいと思います。

データ・アナリティクス入門

問題解決の基本を再確認:MECEとロジックツリーの活用法

問題解決の基礎を学ぶ 今週は、問題解決の4ステップ(What→Where→Why→How)のうち、What(問題の明確化)について学びました。目的を見失わないために、あるべき姿と現状のギャップを数値や定量的に示すことが重要です。そのため、MECEを使い、漏れなく重複なく分解して考えると良いということを再認識しました。 分解の難しさをどう克服する? 過去にロジックツリーを学んだことがありますが、MECEを意識しながら何で分解すべきかを羅列するのは難しいと感じています。多くの場合、目の前の情報や限られた知識だけで分解した気になってしまうことが多いです。この課題を解決するために、最近は生成AIを活用し、プロトコルやフレームワークを使って客観的な情報を得る機会が増えています。これにより、自分でロジックツリーを使って分析しつつ、他者やAIから得られる情報を組み合わせて問題を明確化していきたいと考えています。 学びを日常でどう活かす? 毎月の会議資料や日常の部門の問題解決手段を検討する際に、この学びを活用します。ステップを踏んで考え、MECEを意識しながら、広く情報収集し、ロジックツリーを使って情報を分解することで、まずは問題を明確にすることから始めたいです。

データ・アナリティクス入門

ストーリーで輝く分析のヒント

分析のストーリーは? 分析にはストーリーがあるという考えを強く認識しました。自分の分析では、What‐Where‐Why‐Howの各段階で一連のストーリーを明確に把握することが大切だと感じています。各段階のタスクが直前の段階とのつながりを持っているかどうかを振り返ることで、無駄がなく論理的な飛躍も防げるという点を、例題を通じて実践することで実感しました。 依頼対応のポイントは? また、急な分析依頼に対応する場面でも、提供された情報だけでは問題本質(What)が十分に理解できないと感じた場合は、依頼者に直接確認するなど、問題の明確化に努めたいと思います。こうした確認を徹底すれば、Where以降の作業は自分の担当領域で適切に対処でき、正しい分析ストーリーに沿った有意義な解決策を導き出すことができると考えています。 今後の管理方法は? 今後は、すべての作業においてWhat‐Where‐Why‐Howを軸に管理していきたいと思います。次に何をすべきかを判断する際、その選択肢についてじっくり立ち止まり、同じ段階の他の可能性がないか検討します。また、実施前にも一つ前の段階とのストーリーを再確認しながら、常に論理的で一貫性のある分析作業に努めていきます。

クリティカルシンキング入門

データが示す問題解決のヒント

データの切り分けは? データから課題を抽出し、論点を明確にする構造的思考力の重要性を改めて認識しました。これまでの可視化されたデータ作成方法を復習しながら、「問題→要因分析→解決策提案」という一連の流れが実践的であると実感しました。特に、データの分類軸の切り方によって見えてくる内容が大きく変わる点は、今後の業務において有効に活用していきたいと考えています。 担当業務の見直しは? 私の担当する業務は、直接的に顧客データや売上データを扱うものではなく、事業やプログラムの実施および運営が中心です。現在、開始から3年目を迎えるプログラムのさらなる拡充を目指し、これまでの参加者の所属先、部門、所在地、業種などの特徴や、分野別の分析、そして他の類似プログラムとの比較など、さまざまな視点からの検証を進めたいと思います。 改善方法はどうする? また、自身が携わるプログラムの進捗や課題について、これまで限られた範囲で数値化するに留まっていましたが、今後は問題点を明確にし、MECEを意識した分類とグラフ化によって、限られたスペースにより多くの情報を効率的に伝えられる方法を再検討する所存です。作業中に方針がブレないよう、常に意識を高く保ちながら取り組んでいきます。

「分析 × 情報」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right