- 歴史とデータで進化支える
- 初期から検証し進化実感
- 用途適正で効率追求
AI発展の背景は?
AIの発展背景について問われた際、これまで小手先な知識で使っていた自分に気づかされました。歴史的に発展したビッグデータやアルゴリズムが現在の生成AIを形作っていると理解すると、生成AIが掛け算の一要素としてさらに進化し、今後信じられないスピードと規模で変化していくのだろうと感じます。
初期AIの限界は?
例えば、2019年ごろに登場したある初期の生成AIでは、短文の処理はできても、前文を考慮した返答やリアルタイムな情報のアウトプットは不可能でした。しかし、そこから十年も経たずに、現在では莫大なデータ処理や画像映像処理など、複雑で高度なタスクに対応できるようになった点に改めて驚かされます。ただし、ハルシネーションが発生することもあるため、AIの出力を鵜呑みにせず、常に人間の判断が求められます。また、各エージェントには得意・不得意があるため、「どの場面でどのAIを使うのが適切か」を見極める力が重要だと感じました。
AI活用の違いは?
現状、メール作成、議事録やスライド資料の作成、リサーチ、議論の壁打ちなど、さまざまな場面でAIを活用していますが、「文章生成領域」「推論領域」「画像映像処理」といった各領域でAIのアウトプットが異なります。これらの違いをしっかり認識せずに使用すると、結果が期待通りにならないこともあるため、各AIの用途を明確にする必要性を感じています。
Gammaの特徴は?
また、今回の交流でスライド作成が得意なAI「Gamma」を初めて知りました。より効果的かつ効率的にAIを活用するため、どのようなAIが存在し、その特徴が何かを整理していこうと思います。
授業での課題は?
授業内では、ハルシネーションやセキュリティ問題、求める回答を得る難しさといった課題が挙げられており、多くの点で共感する意見がありました。こうした問題に対して、どのように対処しているのか、コツやノウハウがあればぜひ知りたいと感じました。