データ・アナリティクス入門

Excel実践で磨くデータ思考

データ分析の意味は? データ分析では、比較と独自の観点が価値を生むと感じました。基本的な内容でありながら、Excelでの実践的な手法を学ぶ中で、自分の思考プロセスが整理され、視野が広がったと実感しています。 フレームワーク活用の秘訣は? 今回学んだフレームワーク、たとえばファネル分析や3C、4Pなどを中心に活用したいと考えています。定期的に振り返りを行うことで、より効果的な比較ができるよう意識して取り組むつもりです。 転職後の展望は? さらに、業務においても今回の学びを基礎として活用します。今後、データマーケティング職への転職が決まっているため、壁にぶつかったときは学んだフレームワークや思考プロセスに立ち返り、より広い視野で問題に取り組む方針です。

クリティカルシンキング入門

メール作成が楽になる秘訣!

明確な目的って何? 良い文章とは、目的が明確であり、読みやすさが重要であることを改めて知りました。私はメール作成が苦手で、読みづらいと言われることが多いため、何をどのように意識すべきか理解できたことは大きな学びです。 メール内容は多い? 特に、採用面接を依頼する際のメールや新たな取り組みを案内するメールでは、情報量が多くなりがちで、読みづらくなってしまうことが多いです。今回の学びを活かして、こうしたメールの作成に意識を向けたいと思います。 資料の伝え方は? 些細なメールでも読みやすさを意識します。何かを依頼する際や、新たに資料を作成する際には、受け手が分かりやすいかどうかの視点を持ち、他者に確認を求めて意見をもらい、ブラッシュアップしていきたいと思います。

データ・アナリティクス入門

角度変えて見つける学びの真髄

多角的に見る大切さは? 物事は一方向からだけではなく、さまざまな角度から捉えることで本質に迫ることができます。一つのデータだけでなく、多くの情報を比較検討しながら分析を進める必要があり、見極める力を養うことが大切です。 データ活用のポイントは? 定量データを扱うことが多い中で、そのデータをどう活かすかを常に検討することが求められます。正確なデータの取り扱いをはじめ、集めた情報を蓄積し、前後の変化を比較することが、分析力向上の基礎となります。 数字のパワーを知る? また、分析により提案が有力な判断材料となるよう、数字の扱い方や活用方法にも工夫が必要です。数字が持つパワーは、その扱い方次第で大きく変わるため、具体的な活用策を考えることが重要です。

クリティカルシンキング入門

会議の成功はイシュー特定から

打ち合わせで何を見る? 部門施策の進捗状況を確認し、課題を洗い出す際に、この学習内容は非常に役立つと感じました。特に、チームで打ち合わせをする際に、時折解決策から話が始まってしまう場合があるので、この点を改善したいと思います。最初にイシューを特定し、それをチーム全員で共有することが重要です。また、打ち合わせの中で常にイシューを意識し続けることも心がけたいです。 会議前後の準備は? まず、打ち合わせ前に自分なりにイシューを特定してから会議に臨むことが大切です。そのイシューをチーム全員が認識できるように、議事録やメモに残して共有することも忘れてはいけません。さらに、打ち合わせ中もイシューを一貫して押さえ続けるために、途中でメンバーに確認をすることが必要です。

リーダーシップ・キャリアビジョン入門

若手育成でプロジェクト成功への道

仕事を任せる重要な理由は? 仕事を任せる際は、まずその背景や目的を伝えた上で一度任せてみることが重要です。そして、適切なタイミングで進捗を確認し、必要に応じて軌道修正を行いながら最終形を目指します。振り返りも定期的に行い、良かった点や課題となった点を整理することが大切です。 若手へのアプローチは? モチベーションの上がり方は個人によって異なるため、それぞれに合ったアプローチを心がける必要があります。特に新入社員や若手メンバーに対しては、この方法が効果的に活用できそうです。DX推進部に異動したことで若手メンバーとの関わりが増え、自分がまとめ役になることが多い中で、これらの方法を実践することでメンバーの成長とプロジェクトの成功に貢献できると感じています。

クリティカルシンキング入門

学びを仕事に活かしたい!

読み手に合った文章とは? 読み手に合わせた文章作成を心がけることが大事です。 まず、伝えたいメッセージに応じた文章であるかを確認します。そして、文章が長くなりすぎていないか、体裁に問題がないかをチェックします。 グラフの選び方と整合性 グラフを使用する場合は、適切なグラフを選び、メッセージとの整合性を確認することが重要です。また、情報を順序よく提示し、読み手が内容を探さないようにする工夫が必要です。 良い文章を参考にする意義 次に、他の人が作成した文章を読んで良いところを積極的に取り入れることも有益です。これにより、自分自身の文章力を向上させることができます。 常に受け手にとってわかりやすく、読みたいと思える内容を心がけたいと思います。

データ・アナリティクス入門

実践で切り拓く分析の新世界

どう問題解決する? 問題解決のためのステップと手法について学び、視野を広げるとともに、段階的なアプローチの重要性を再認識しました。分析手法を活かしながら、反復して問題に取り組むことで、着実に解決へと導けることを実感しました。 仮説はどう検証する? また、これまでの業務では、机上の分析に留まっていたと感じる部分があったため、仮説に基づいた実践的な取り組みが必要だと痛感しています。具体的には、仮説の検証や要因の洗い出しを行うために、ABテストのような活動を積極的に実施することで、分析結果を実践に反映し、さらなる理解を深めるプロセスを構築していきたいと考えています。次のステップを意識しながら、迅速な問題解決を目指して取り組んでいきます。

データ・アナリティクス入門

データの裏付けで説得力アップ

データ分析の本質は? コンサル業におけるデータ処理では、これまで感覚で平均値や中央値、さらには円グラフや棒グラフの選択を行ってきました。しかし、平均値だけではデータのばらつきや分布の特徴が十分に表現されないため、標準偏差のような指標を用いることで、データが平均値付近に集中しているのか、ばらつきが大きいのかを把握することができます。また、ヒストグラムや円グラフといったビジュアル化ツールは、データの全体像を直感的に理解するのに役立ちます。 成果向上はどう実現? 今後は、根拠に基づいた値の選択やグラフの作成を行うことで、自己のパフォーマンス向上はもちろん、ジュニアメンバーへの指導においても説得力のあるアドバイスが可能になると感じています。

クリティカルシンキング入門

ロジックツリーで見える説得力

根拠の使い分けは? 根拠を使い分けるという発想はこれまで無かったため、提案を行う際に必ず課題の形成、その原因、解決策という流れで考えてきた自分にとって大変新鮮な学びとなりました。 ロジックツリーの効果は? また、資料作成や他部署への提案において、前提知識のある相手なら多少省略しても伝わるものの、実際の業務ではそのような場面は少なく、ロジックツリーを用いることで相手に明確に伝わる文章を作成する必要性を強く感じました。 説得力向上はどう? さらに、報告や資料作成において結論だけではなく、根拠が明確でないために論理が飛躍し説得力に欠ける場合が多かったことから、ロジックツリーを活用して、説得力のある提案ができるよう努めていく所存です。

データ・アナリティクス入門

納得を呼ぶ仮説とデータの魔法

仮説の種類は何? 仮説には「結論の仮説」と「問題解決の仮説」の2種類があると学びました。また、複数の仮説を立てることや、各仮説が網羅的にカバーされているかを確認する点がポイントとして挙げられています。 どんなデータが大切? さらに、分析や資料作成の際には、比較するためのデータ収集を行い、反論を排除する情報にまで踏み込むことが重要です。自分に都合の良いデータだけを集めるのではなく、あらゆる角度から納得感のある結論に導くために、仮説を立証するためのデータ収集と加工を繰り返すプロセスが必要だと感じました。また、報告や資料作成の際には、意識的に反論者の視点を取り入れることで、より説得力のある分析ができるようになると確信しています。

クリティカルシンキング入門

伝わる文章で未来を動かす

文章で何を伝える? 情報を見える化する際、伝えたい箇所を明確に意識し、順序にも工夫を加えることの大切さを実感しました。また、文章の冒頭から読者の関心を引く工夫が必要だと学びました。 どうすれば読まれる? 日々の業務報告など、読んでもらうための文章作成において、今の業務に直結する学びとなりました。普段何気なく交わすチャットの中でも、文章の大切さを再認識することができました。 伝える工夫は何? 今後は、毎日行うチャットや顧客へのメールにおいて、より伝わりやすい文章作成を心掛けたいと思います。特に、これまであまり意識してこなかった社内チャットにも注力し、読んでもらい、発信することで皆に動きを促す工夫を実践していきたいです。

データ・アナリティクス入門

グラフで魅せる平均の真実

どの平均を採る? 平均という言葉一つをとっても、その状況にふさわしい計算方法を採用しなければ、意味をなさないと感じています。どの平均値を用いるべきか、またどの数値を算出すべきかを十分に理解し、それぞれに合った平均値を出すことが大切だと思います。さらに、グラフを活用することで、視覚的にわかりやすい情報提供ができると考えています。 ビッグデータの平均は? 実際のところ、現在の業務においては平均値を用いる場面はあまりありません。しかし、扱うデータ量が多いビッグデータの現場では、いずれ必要になると予想されます。その際には、どの平均を選択すべきかを慎重に検討し、わかりやすいグラフによってデータを効果的に提示していきたいと思います。

役職が「一般社員/職員」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right