デザイン思考入門

共感×問題定義で挑む成長術

共感はどう活かす? デザイン思考の5ステップを学ぶことで、全体の流れが体系的に理解できました。特に「共感」と「問題定義」の重要性が印象に残り、表面的な言葉だけでなく相手の背景や感情をくみ取って本質的な課題に迫るアプローチを再認識することができました。日々の業務において、現場の方の話を丁寧に聞く大切さを改めて実感する良い機会となりました。また、プロトタイプやテストを通じて改善を図る考え方も、提案活動に活かせると感じています。 現場の実感は何? 私の業務では、社内の各部門で発生する業務課題や非効率な業務フローのヒアリングを行い、データやデジタルの力を活用して改善提案をしています。今回の学びで得た「共感」「問題定義」「発想」「試作」「検証」の流れは、実際の現場支援プロセスに即していると感じました。特に、現場の方が本当に困っている点を深掘りする「共感」と、課題を的確に把握し整理する「問題定義」のステップは、今後のヒアリングや提案活動において意識していきたいポイントです。自分の仕事をより意味のあるものへと昇華させるヒントを得ることができました。 未来の改善はどう? 今後のヒアリング業務では、相手の状況や感情に寄り添い「共感」をしっかりと行い、話の中に潜むニーズや課題の背景を深く理解することを意識します。そして、「問題定義」の段階で課題を整理し、関係者と共通認識を持つことに注力します。必要に応じて、可視化やプロトタイプのアイディア出しも行い、改善の方向性を早期に示す工夫を取り入れます。小さな実践でも「試してみる」「やってみる」姿勢を大切にし、相手と共に課題を乗り越えていくパートナーとして活動していくことが今後の目標です。

クリティカルシンキング入門

ピラミッドで明快!伝わる文章力

どう文章を組み立てる? 日本語では主語が省略されやすいと改めて感じました。そこで、ピラミッドストラクチャを意識し、結論から柱となる理由、さらにその理由を補強する具体例を対の概念で整理することが大切だと実感しました。具体と抽象を行き来しながら文章を組み立てると、全体が上手くまとまるように感じます。 職場の伝え方はどう? 会議やメール作成、プレゼンテーションなど、報告・共有・説明・承認が求められる場面はさまざまです。私の職場は医療機関で、協働するスタッフは職種も多様であり、患者さんの背景もさまざまです。そのため、伝えたい内容を言語化する際には、相手の立場に合わせた適切な言葉選びが重要です。スタッフに対してプロジェクトや目標を説明する際は、まず結論を明確に伝え、その理由を順序立てて具体的に説明することを心掛けたいと思います。患者さんに対しては、相手に寄り添いながら、要点を明確かつ端的に伝えることが求められると考えています。 主語の明確さは? また、「言いにくいこと」を伝える場合には、主語を省略してしまいがちな点にも注意が必要です。誤解を防ぐために、主語は明確にしておくことが大切だと感じました。結論を明確にし、その根拠を具体的に示すことを意識するようにしています。 メモ活用はどうする? さらに、会議などで使用する手持ちのメモはピラミッドストラクチャ形式で作成するようにしています。伝えたいメッセージを明確にし、その根拠を列挙した上で、振り返りながら矛盾点がないか確認します。文章作成やメンバーの文章をチェックする際にも、同じくピラミッドストラクチャを活用して思考を整理し、主語と述語の関係性に気を配るよう心掛けています。

クリティカルシンキング入門

切り口が切り拓く学びの可能性

データは何を伝える? 表やグラフを用いてデータを可視化すると、数字そのものだけでは見えなかった切り口が浮かび上がり、新たな示唆を得ることができると感じました。単なる数値比較だけでなく、比率の違いを明確に示すことで、より深い理解につながります。 年齢の背景はどう? また、年齢などの属性を分解する際は、機械的な年代区分に頼らず、その背景や特性を考慮することが重要だと改めて実感しました。単一の切り口に固執せず、同じ年齢層内でも別の観点から分析する工夫が求められると感じます。 切り口の秘訣は? 切り口を設定する際は、When/Where/Howといった観点を取り入れることで、網羅的かつ多角的な分析が可能になります。たとえ一つの切り口で顕著な特徴が見えたとしても、それだけに満足せず、さらなる検証を重ねることが大切です。 提供方法は適切? 実際に、生命保険のある支払事由発生状況の数値データを、年代別や発生時期といった切り口で分解し、営業現場に提示した経験があります。しかし、この講義を聞いて、その提供方法が目的に十分沿っていたのか、またはもっと細かく分解する余地があったのかと自問する機会となりました。今後は、まず自分なりに目的を明確にした上で、When/Where/Howの観点から再度切り口を検討したいと考えています。 新たな切り口は? せっかく取得したQ2のデータを活用し、まずはどのような切り口が設定できるのか、単純な年代別ではなく異なる観点からの分解が可能かどうかを試してみようと思います。そして、ある程度データを分解した後は、とにかく可視化に努め、動きながら検証を進めることの重要性を再認識しました。

リーダーシップ・キャリアビジョン入門

行動で示すリーダーへの一歩

行動はどう捉えていますか? 行動とは、意識と能力の掛け算であり、外部からは行動のみが見えるという基本原則があります。どれだけ優れた能力があっても、意識が伴わなければその成果は具体的な行動として示されず、他者に伝わりません。 リーダーの条件は何ですか? 誰もが日々の積み重ねを通してリーダーになれると信じています。リーダーとしてふさわしいかどうかは、その人に対する信頼にかかっており、信頼がなければ誰も従うことはありません。また、プロジェクトのゴールや背景を明確に言語化する力も、リーダーとして重要な資質です。 実践で示すコツは? 良いリーダーを目指すためには、意識と能力を磨き、それを実際の行動で示す努力が必要です。どんなに多くの知識や理論を学んでも、実践しなければその価値は認められません。新しく業務を開始する際や担当者が加わる場合には、単なる業務説明にとどまらず、プロジェクトのゴールと背景を確実に伝えることが大切です。 誠実さはどう築く? 誠実な対応とは、約束を守り、他者の体調に気を配り、理解度を確認するなど、信頼を築くための行動の積み重ねです。上司とフォロワーが同じ情報を共有し、仕事をしっかりフォローすることも重要です。また、幅広い人々と積極的にコミュニケーションを取ることで、相手をよりよく理解する訓練にもなります。 学習計画は整っていますか? さらに、積読になっている本や学習領域を整理し、計画的な学習を進めることが求められます。そして、プロジェクト単位や月、週ごとの振り返りを行いながら、常にプロジェクトメンバーがゴールと背景を意識できるタスク管理や進捗管理を実践することが必要です。

マーケティング入門

ターゲティングとポジショニングの新発見

ターゲティングの6Rとは? ターゲティングにおいては、ただ「この商品はこういう顧客に売れそうだ」というだけでは不十分です。市場規模、優先順位、成長性、到達可能性、競合状況、反応の測定可能性といった6つの要素である「6R」で評価し、ターゲットを決定する必要があります。 訴求ポイントの絞り方は? ポジショニングについて、商品の訴求ポイントは2つまでに絞ることが重要です。商品の特性を洗い出し、その中から「顧客の共感を得られる」および「競合と差別化できる」特徴を選定しましょう。顧客が「この商品が好きです、なぜなら~だからです」と明確に理由を述べられるようなポイントでなければなりません。また、パーセプションマップを活用して確認することも大切です。 商品の訴求ポイントを絞ることで、お客様に伝わりやすくなることは理解していました。しかし、どの訴求ポイントを選ぶかに関しては、自分のこだわりが勝ってしまうことが多く、顧客の共感を得られ、競合と差別化できるかの確認が不足していたと感じました。今後はその視点を意識して取り組んでいきたいと思います。 ターゲット拡大の手段は? ターゲットの変更については、特に既存のブランドの顧客層を広げる際に非常に有効な手段だと実感しました。柔軟な考え方を持ちながら、このアプローチを取り入れてみたいと思います。 ブランドとしては、すでにターゲットがある程度決まっている商品の企画を担当することが多く、ターゲットについて深く考える機会が少なかったです。今回の講義で学んだターゲティングのフレームワークを活用し、異なるターゲットに対してどのような訴求が共感を得るのかを日頃から意識して考え続けたいと思いました。

クリティカルシンキング入門

データ分析で「全体像」を掴む技術

全体像はどう描く? データ分析において、状況を明確にするために分解が重要だと改めて感じました。まずは全体像を定義し、その上でデータを鵜呑みにせず可視化することが大切です。これまでの分析ではグラフを十分に活用してこなかったため、今後は積極的に取り入れたいと思います。比率計算を行うことは基本として、これまでの実践が正しかったと確認できた点は良かったです。 どの視点が大切? 分析する際、単に機械的に分けるのではなく、BtoBビジネスでの分析環境を踏まえて、年齢層や学生かどうかといった視点を考慮することが重要です。特徴的な傾向が見えない場合でも、それ自体に価値があることを意識し、様々な切り口から分析を試みることが大切です。こうしたアプローチを通じて、データ分析の精度を上げていきたいと思っています。 仮説の真実は? 私は頻繁にデータ分析を行う立場にいますので、全体を改めて定義し、グラフを駆使しながら多角的にデータを分解してみることに挑戦したいと考えています。また、特定の仮説が正しいか検証するためにも、多様な切り口での分析を継続して行いたいです。現在の業務改善プロジェクトで実践している「プロセス分解」にも、さらに効率的に活用できる方法を追求していきます。 過去と今を比べる? そこで、過去のプロジェクトレビューを計画しています。以前取り組んだ案件のデータを利用し、当時と最近の学びを基にした分析を比較し、効率や分解の質を評価したいと考えています。結論が変わることはないと思いますが、分析時間や分解の質など他に計測できる点を比較し、効率化の可能性を探りたいと思います。適用可能なプロセス分解手法は、今後も活用していくつもりです。

リーダーシップ・キャリアビジョン入門

職場改善とモチベーションの鍵を探る

ハーズバーグ理論をどう考える? モチベーションに関する理論には様々なものが存在しますが、中でも印象に残ったのはハーズバーグの動機づけ・衛生理論です。この理論によれば、衛生要因が改善されたとしても、必ずしも満足するわけではなく、不満がない状態になるに過ぎません。反対に、たとえ仕事にやりがいがあって満足度が高いとしても、劣悪な環境では不満が生じることになります。今後は、衛生要因と動機づけ要因を分けて考えていきたいと思います。また、振り返りについては、具体的経験→内省観察→抽象的概念化→能動的実践というプロセスを意識して行います。 環境づくりってどうする? ハーズバーグの理論から学び、職場環境の改善に取り組むとともに、やりがいを感じられるような環境を作ることや、職場での称賛の声かけや仕掛けを導入していきたいと考えています。スタッフのモチベーションにも常に気を配り、その心情を理解しようとする努力を続けたいと思います。 振り返りの進め方は? 振り返りの時間においては、インシデントや良かった症例を含めて、具体的経験→内省観察→抽象的概念化→能動的実践というプロセスを踏むことを意識します。また、リーダーたちにハーズバーグの動機づけ・衛生理論を伝え、業務改善の仕組みを継続しつつ、称賛や認め合うような提案を進めていきます。やりがいに繋がる症例のマッチングも心がけていきたいです。 評価面談はどう実践? 1on1ミーティングや評価面談の際には、この振り返りのプロセスを意識して行い、リーダーたちにその方法を伝えます。日常の事例の振り返りにおいても、スタッフが責められていると感じることのない振り返りプロセスを実践することが大切です。

データ・アナリティクス入門

分析の「比較」効果で迷い解消!

分析の基本: 比較の重要性とは? 分析は比較であるというシンプルな理解に到達しました。以前は、数字から何を見出すべきか分からず複雑に考えていましたが、シンプルな視点からスタートすることの重要性を学びました。ただし、正しい比較対象がなければ、正確な分析はできません。このことに関連して、"要素をそろえる"という部分については、さらに実践的な学習や本コースでの深掘りを行いたいです。 効率的な分析設計のために必須なことは? また、グラフなどの見せ方を決定する以前に、分析する目的を設定すること、特に依頼された場合はその確認が大事だという点も理解しました。これにより、システムテストの品質評価やベンダー選定時など、具体的な場面で分析の質を向上させることができると考えています。 データ分析における注意点とは? これまでの経験では、依頼時に目的が曖昧な状態で受け取ることが多く、データの分析において何をすべきか判断がつかなくなり、結論を出せないこともありました。今後は、以下の3点を重視して取り組む予定です。まず、やみくもにデータを加工せず、目的の確認と仮説立てを確実に行うこと。次に、分析は比較を念頭に置くこと。そして、比較対象を分析の目的に沿って選定することです。 依頼者とのコミュニケーションで何が重要? 依頼者からは、目的の確認や必要な分析の方向性をしっかり聞き取ることが重要です。分析を始める前に目的を明確にするステップを必ず取り入れるべきだと感じました。その際、仮説をある程度考えると良いと思いました。また、仮説を立てる際には、比較対象が適切かどうかを依頼者と事前に合意することで、さらにスムーズに進められると感じています。

データ・アナリティクス入門

データで意思決定力を高める学び

データにコメントを加えるべき理由は? 対面で説明をしていたため、分析データ(数値やグラフ)にコメントを入れることができなかった部分がありました。しかし、その場にいない人や聞いていない人もいることを考えると、文章を加えることは重要です。 グラフ選びのポイントは? 誰が見てもわかりやすいデータを提供するために、大きな数値には%を、シェアを見るためには円グラフを、上がり下がりを示すには縦棒グラフを、差を示すには横棒グラフを適切に使い分けることが大切です。 効果的な意思決定のためには? 「意思決定を行う」ための分析には、比較対象を明確にし、その基準を設けることが重要です。基準が人によって異なると、決定が難しくなります。そのため、上司や同僚との確認やコミュニケーションをしっかりと行うことが必要です。 計画作りで考慮すべき点は? 分析に取り掛かる前には、ヒアリングや過去資料を確認し、仮説を立ててから分析を進めることが重要です。計画は大まかでなく、他人も理解しやすいように具体的に作成し、次に生かせる内容にすることを心掛けたいと思います。資料のページ数は増えてしまうかもしれませんが、「意思決定を行う」という目的を意識しながら簡潔にまとめる努力が必要です。 定量・定性分析の進め方は? 過去に事例がなく、基準や要素、軸なども整備されていない状態ではありますが、データを活用して定量・定性分析を進め、今後共通する基準を元に意思決定ができる土台を築いていく必要があります。中期的な目標としては、PDCAを回せるようにすることを掲げています。そして、短期的には基準の作成という要修正項目を念頭に置きながら分析を進めていきます。

クリティカルシンキング入門

データ分解で見つける新しい視点

データ分解の必要性は? 今週の学習では以下の点について考察しました。まず、データを分解する際には、さまざまな視点からの切り口を持っておくことが重要です。データの分解方法や細かくするやり方によって、データの見方は大きく変わり、傾向や仮説が立てやすくなります。また、多面的な視点でデータを分解することも必要です。MECE(漏れなく、ダブりなく)を用いて検証することは基本ですが、さまざまな角度から分析することの重要性を感じました。さらに、データの可視化も重要であり、グラフなどを使うことで傾向の見方が大きく変わるため、積極的に用いていきたいと考えています。 業務へどう活かす? これを自分の業務に当てはめると、以下のようになります。データを単に表にまとめるだけでなく、詳細に分解したりグラフ化することで、関連性の洗い出しに役立てられると考えます。具体的には、開発中の製品の物性データ解析を行い、改善に必要な影響因子を洗い出したり、売上と在庫のデータ推移を国やユーザーごとに解析し、仮説立てに活用したりします。また、文章データを整理し、プロセス解析と分類分けによる分析を行います。 分析に多角視点は? データ分析や分解については、自分だけで行うのではなく、他の人にも確認をお願いし、異なる視点や着眼点を参考にして分解のバリエーションを増やすよう心がけます。データを取得する際も、従来の方法にとらわれず、「本当に必要なデータなのか」という視点を意識して行います。過去のデータとの関連性も考慮に入れ、有用なデータ取得を目指します。結果に対しては、「本当か?」といった問いを繰り返し、別の視点での傾向の可能性を確認することも重要です。

クリティカルシンキング入門

情報整理で業務効率を劇的に向上させる方法

情報整理の重要性をどう感じたか? 様々な切り口で情報を分解し、要素を整理することの重要性を改めて実感しました。MECE(Mutually Exclusive, Collectively Exhaustive)の考え方を用いることで、漏れなくダブりのない形でカテゴリを設定できるようになります。これにより、分析や提案の精度が向上することを実感しています。 効果的な提案のために何を考慮すべきか? 例えば、お客様の傾向を分析するときには、業種やニーズ、提案内容など多角的な視点で考えることが重要です。業種ごとにニーズが異なるので、それぞれに応じた提案をすることで、より効果的なアプローチが可能になります。 業務の効率化には何が必要か? また、自分の業務や時間の使い方についても、同様に多面的に考えることが求められます。こうした考え方を定着させることで、より効率的に業務を進めることができるようになります。具体的なフローを考え、その進め方についても見直すことで、業務の効率化が図れることを感じました。 案件成功へのパターンは? さらには、案件の進め方についても同じアプローチが有効です。異なるパターンを検討し、それぞれのパターンが成功する可能性を考えることで、「これなら」という勝ち筋を見つけることができます。こうしたプロセスを経ることで、実際の提案がより具体的で説得力のあるものとなり、お客様に刺さる提案ができるようになります。 MECE活用の意義とは? このように、MECEの考え方を取り入れ、情報を整理し分析することの意義を再確認できました。今後もこの手法を活用して、より効果的な業務遂行を目指していきたいと思います。

データ・アナリティクス入門

仮説で切り拓く未来の発見

仮説の意義は何? ビジネスにおける仮説とは、ある論点に対する仮の答えを意味します。重要なのは、正しい答えに決め打ちせず、複数の仮説を挙げることで網羅性を確保することです。仮説には「結論の仮説」と「問題解決の仮説」があり、時間軸によって過去の検証と未来の予測で内容が変わります。 仮説をどう検証する? 問題解決の仮説は、問題解決のプロセスに沿って、WHATからWHERE、WHY、HOWへと各要素に仮説を立てるものです。このアプローチにより、検証マインドが向上し、問題意識や改善点への気づきが促進されるという利点があります。 仮説は広く捉える? ゲイルを通して学んだのは、正しい答えに近づけようと意識するあまり、仮説の範囲が狭くなってしまう可能性があるという点です。思いつくままに仮説を列挙してみることで、仮説の網羅性や全体像が明らかになることを実感しました。また、数値を用いた費用対効果の分析手法も学ぶことができ、有用な気づきとなりました。 売上の原因を探る? 具体的な例として、売上分析においては、単価が低いことやコストが上回っていること、あるいは季節性の変動によって患者数が左右されるなど、さまざまな仮説が考えられます。これらの仮説は、結論の仮説として売上未達の要因を示すものと、問題解決のプロセスとして原因究明のための仮説として整理することが求められます。 仮説報告はどう? 毎週の売上数値進捗報告では、複数の仮説を設定し、その検証結果と合わせて報告することで、仮説立案のプロセスに説得力を持たせることが大切だと感じました。月末には、立てた仮説を通して得た気づきを言語化し、次のステップに活かす姿勢が必要です。

女性に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right