データ・アナリティクス入門

平均だけじゃ見えないデータの真実

平均以外の指標は? 単純平均は外れ値の影響を受けやすいため、中央値やデータのばらつきを確認する重要性を理解しました。また、ヒストグラムや標準偏差についてはこれまで十分に活用できず苦手意識があったものの、演習を通じて具体的な活用イメージを持つことができました。加えて、加重平均や幾何平均が、データの重要度や変化率、成長率の評価に有効である点も理解できました。 分析方法はどう変わる? 課題分析においては、単に平均値から仮説を立てるだけでなく、データのばらつきも併せて確認するプロセスを取り入れるようにしています。さらに、セミナーの集客状況や参加者の満足度を評価する際、平均値に加えて中央値をしっかりとチェックするよう努めています。今後は、加重平均や幾何平均が活用できるシーンについても積極的に検討していく予定です。

データ・アナリティクス入門

数字で見つける成長のヒント

手法の違いは何だろう? 一般的な平均値は手軽に利用できますが、データのばらつきや目的に応じて、加重平均や幾何平均などの手法を採用する必要があると理解しました。普段は精度管理のため標準偏差を使用していますが、具体的な事例を通じて、他の場面でも活用できるというイメージが湧きました。 分析のコツは何? データの比較から仮説を立てる苦手意識が少し和らいだように感じます。定量分析では単純平均や標準偏差を用いていますが、定性分析も一旦定量値に置き換えて試してみたいと思います。また、人事考課にもデータが活用できるため、評価者間のばらつきや傾向を把握するのに役立つと考えています。さらに、臨床検査の提供プロセスにおいて、各段階でのかかる時間を分析し、収束していない部分を可視化することで改善の余地を見出せる可能性を感じました。

クリティカルシンキング入門

全体把握でMECEを極める

どのように分解する? 分解作業において、要素を漏れなく洗い出すのが自分には苦手であると気付きました。ダブりなく整理する点は、既に出した切り口を見直すことで対処できるものの、漏れを防ぐには全体を捉え、どのように分解すればMECEになるのかを常に意識する必要があると感じました。また、分解の結果、明確な傾向が見えなくても、それ自体が一つのデータであり、次の考察に役立つという考え方にも納得しました。 労務データの新視点は? 労務問題を考える際、組織ごとの残業時間やエンゲージメントサーベイといった複数のデータは活用してきましたが、データの加工や組み合わせによる新たな切り口で分析する経験は少なかったです。今後は、サーベイの種類を分類し、データを整理・集計することで、より新鮮な視点から組織を見据えていきたいと思います。

データ・アナリティクス入門

目的と数字が織る成功のヒント

数字の真意は何? この講座では、まず常に目的を意識することの大切さを学びました。数字そのものを見るのではなく、数字が何を意味するのかを瞬時に理解し、その上で適切な比較や分析を行うポイントを明確にすることが重要だと感じました。基本的な枠組みを意識し、それを習慣化することで、数字を正確に捉え、的確な意思決定につなげることができると実感しました。 分析と予測はどう? また、担当するサービスの現状分析や戦略立案のプロセスにおいても、単純に数字を追うのではなく、目的に基づいた各数字の解釈とその比較が不可欠であると学びました。さらに、来期の市場や売上予測に向けた取り組みでは、具体的な市場データが限られている中で、アクセス可能なデータをもとに市場の傾向を予測し、現状分析から将来の売上を導き出す方法の重要性を感じました。

クリティカルシンキング入門

視線で魅せる!分かりやすいスライドづくり

スライドの工夫は何? スライド作成時の視覚化について、資料作成時に文章とグラフをただ配置するのではなく、読み手の目線の動きを想像しながら、伝えたい内容とその根拠となるグラフの位置を工夫することが重要だと感じました。この方法によって、スライドを見た瞬間に、読み手に余計な考察を促すことなく、要点がすぐに伝わる効果が期待できると考えています。 社内視点の見直しは? 今週は、普段から意識している営業や人事の視点を再確認する機会となりました。全社員向けの施策案内を作成する際、文章が多くなりすぎないよう、グラフを根拠として配置することで、より明確に内容が伝わると感じました。直近で予定している研修資料の作成においても、文章が過剰になっている部分があるため、現状を見直し、スライドの構成を再検討していきたいと思います。

データ・アナリティクス入門

データ分析で仮説と検証を学ぶ

仮説の立て方を見直すには? 今まで、データ分析において仮説から検証のプロセスをなんとなくで行っていたが、複数の仮説を立てることや、網羅性を持たせることはあまり意識していなかった。また、立てた仮説の検証だけでなく、反対の事象を裏付けるデータも収集することで、より説得力のある仮説検証ができる点も意識すべきだと感じた。 データ分析を業務にどう活かす? 今後、業務でデータ分析を行う際には、仮説立てから検証までのプロセスを意識的に組み込むようにしたい。現在取り組んでいる運転資本の改善についても、問題がどこにあるのか(Where)を仮説立てし、既存のデータから分析を行うようにする。そして、Whereが特定できた後には、なぜその問題が生じたのか(Why)の仮説を立て、その仮説を立証するための分析方法を検討するつもりだ。

クリティカルシンキング入門

複数視点で見つける意外性

複数視点で何を学んだ? 博物館の来場者数の分析では、単一の切り口だけでなく複数の視点から見ることで、これまで気づかなかった情報が浮かび上がる様子に強く印象づけられました。ひとつの分析に頼ると誤った結論に導かれる恐れがあるため、複数の視点からの仮説を立て、しっかりと検証する重要性を改めて実感しました。 アンケートはどう分析する? また、アンケート結果をまとめる際にも、今回学んだ複数の切り口での分析方法が生かせると感じました。従来は年代、性別、部署、役職など、一つのカテゴリーに絞って分析しがちでしたが、複数の視点から見ることで今まで気づかなかった傾向を見出せる可能性があります。今後は、仮説を立てながらどのような角度で分析を進めるのが最適かを考えつつ、アンケート結果のまとめに取り組んでいきたいと思います。

クリティカルシンキング入門

学びが心を動かす瞬間

イシューの本質は? まず、イシューとは、今ここで考えるべき問題を意味します。扱うべき事柄を問いの形で設定し、何に着目するのかを明確にすることが大切です。そのため、常にイシューから逸脱しないよう意識しながら議論を進めます。 切り口の選び方は? 次に、イシューを分かりやすくするため、複数の切り口で要素に分解します。数字については、一手間加えて分析することで、より具体的な視点を持つように努めます。 議論はどう進む? また、問題に取り組む際は、いきなり考え始めるのではなく、まずイシューを明確に特定し、その構成要素に分解してから本格的に検討するようにします。複数のメンバーで取り組む場合は、各自がイシューや要素を共通認識として把握できるよう、ホワイトボードなどに記録しながら議論を開始することが求められます。

データ・アナリティクス入門

仮説実践!即断で未来を掴む

効果測定は本当に? A/Bテストの実施により、短期間で効果測定が可能であることを実感しました。一方、単にデータ収集に時間をかけるだけでは、必ずしも問題解決には結びつかないということが分かりました。 分析時間は適切? 業務を進める際、初めはデータ分析から始めることが多い中、分析に時間をかけすぎる傾向があると感じています。一定量のデータが得られた段階で、迅速に仮説を設定し、追加の分析が必要かどうかを判断するか、実行フェーズに移行するかを見極めることが重要だと学びました。 行動開始のタイミングは? このコースを通じて、仮説に基づき行動に移すタイミングの大切さを再認識しました。今後は、データ分析に没頭しすぎず、適宜ストップしながら、仮説思考を軸にした実践的なアプローチを心がけたいと思います。

クリティカルシンキング入門

問いが導く未来への一歩

状況把握はできてる? 一般的に、良いとされる施策であっても、現在の状況を正確に把握しなければ、逆効果に陥る可能性があります。まずは自身が置かれた状況をしっかり理解し、その上で核心となる課題を明確に設定し、具体的に何をすべきかを考えることが大切です。 問い意識はしっかりある? また、ただ漠然と物事を始めるのではなく、「問いは何か」を常に意識し続けることが重要です。この姿勢が、より良い結果につながる基盤となると感じます。 新手法に挑戦する? 例年通りの方法に固執し、新しい手法に対するリスクや労力の増大を理由に前例に従うことが多いですが、これまで当たり前のように行ってきた方法に、まずは問いを持つという視点から見直しを加えることで、完成物の質が向上し、業務の効率化にもつながるのではないかと考えました。

データ・アナリティクス入門

固定観念を打破する新視点

固定観念はどう対処すべき? 今週の講義では、マーケティング分野に関して既に知っている内容も多く取り上げられましたが、知識があるがゆえに陥りがちな固定観念に注意する必要があると感じました。これまでの経験から「おそらくこれが原因」と考えてしまう傾向がありましたが、フレームワークを活用し、自分が持っていない視点から再確認することの重要性を再認識しました。 多角的判断はどう進める? また、マーケティング施策の検討時には、自社や自分自身の状況だけに注目しがちですが、競合や市場といった複数の観点から総合的な判断を行うことが大切だと実感しました。さらに、複数の選択肢の中から意思決定をする場合、判断基準を点数化し合計点で評価する方法が合理的であるとの知見も得たため、今後の実践で積極的に活用していきたいと考えています。

データ・アナリティクス入門

実務に効くプロセス分解の秘訣

どこで分割すべき? 今週はプロセスに分けて分析する方法を学びました。Web解析の基本知識があるため、内容は理解しやすかったです。特に、Web以外の分野でプロセスに分解して分析する場合、どの段階で分割するかが非常に重要だと感じました。効果的でないプロセス分割をしてしまうと、いかに情報を分析しても課題解決に結びつく情報提供ができなくなるため、プロセスの分離設計が不可欠だと実感しました。 A/Bテストはどう? また、A/Bテストについては実施が必要だとは思いつつも、実務ではリソース不足などの理由で2パターンの検証が難しいケースが多いと感じています。そのため、実務ベースでは別の手法を模索する必要があると考えます。勉強のために、実際に行われたA/Bテストの具体的な事例があれば、ぜひ共有いただきたいです。

女性に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right