データ・アナリティクス入門

データ分析で見つけた新しい視点と手法

なぜデータ分析の目的が重要? 今回の講座を通して、データ分析の方法について新たな視点を得ることができました。これまでは、やみくもにデータ分析に取り掛かりがちで、HOWにばかり目を向けていましたが、まずは目的や問題点を特定し、そのうえで分析を進める重要性を認識しました。また、複数の仮説を持ち、それを検証するプロセスも新たな学びとなりました。この講座を通じて、アウトプットの重要性も改めて実感しました。インプットしたことはすぐに忘れてしまうため、学んだことを自分の言葉にする時間を確保し、習慣化することが大切だと感じました。 データ分析のステップとは? 現業務においては、データ分析をプロセスに分けて取り組みたいと思います。具体的には、目的の設定、問題点の特定、原因の分析、解決策の検討というステップを踏むことで、自分の行うデータ分析の目的を明確にし、どのような視点で仮説を考えるべきかをシャープにしていきたいと考えています。 データ分析の型をどう身につける? また、データ分析の型を身につけたいと思います。特定の分析を行う際の型が身についていれば、データ分析の実行が容易になると感じました。例えば、特定の状況で使う分析手法をあらかじめ知っておくことで、効率的に進められるでしょう。 学びを習慣化する方法は? さらに、自身の成長のためにも学びやアウトプットを習慣化したいと考えています。講座を通じて行った振り返りやグループワークでの意見交換は、知識や思考を深める助けとなりました。これを続けて習慣にしたいと思います。 実践知識をどう高める? データ分析の実践知識についてもさらに勉強を進めたいです。他社事例などを参考にしながら、より鋭い経営分析や戦略検討ができる基盤を築けるよう努力します。 BS項目の分析はどう進む? 特に、まだ分析が進んでいないBS項目については、プロセスに則って分析し、課題解決に取り組む予定です。また、週に1度はアウトプットの日を意識的に作り、学んだことを整理し、反省点や来週の目標設定を行う時間を確保したいと思います。

データ・アナリティクス入門

データが語る学びの軌跡

どのプロセスが必要? 分析とは、データ同士を比較する行為であると捉えられます。そして、分析は仮説を立てることから始まり、目的や問いを明確にした上で、仮説設定、データ収集、そしてその仮説を検証するプロセスを踏む、いわば「プロセス×視点×アプローチ」が重要となります. どの視点が有効? 分析における視点としては、インパクト、ギャップ、トレンド、バラつき、パターンの5つが挙げられ、各々の観点からデータを多角的に検証することが求められます。一方、アプローチとしては、グラフ、数字、数式の3種類が存在し、状況に応じた手法の選択が大切です. どの代表値を使う? 数字によるアプローチでは、まずデータの中心位置を示す代表値を注視します。代表値には単純平均、加重平均、幾何平均、中央値などがあり、また、データの散らばりを示す標準偏差などを用いて、他のデータの状態を把握することが重要です。代表値についても、観点により複数の値が存在するため、適切な選定が必要です. 相関はどう読む? さらに、数式化の側面では、「欲しい結果に対して何か効いているか?」という視点で、相関関係を見いだすことができます。ただし、相関が必ずしも因果関係を示すわけではない点に留意しなければなりません. 今後はどう進む? 通常、業務においては年度別の件数や特定分野の傾向を、主に単純平均から読み取っていましたし、どのグラフで可視化するかに対して意識が十分ではなかったと感じます。しかし、今回の学習を通じて、目的を明確にし、どの視点でデータを見るべきか、どのアプローチが最適かということを、1つ1つ丁寧なステップとして考える重要性を学びました。また、相手に説明する際には、ビジュアルを活用することで情報がより伝わりやすくなることも実感しました. 次に何を分析? 今後は、何を分析したいのか、何を知りたいのかを明確にした上で、「代表値」「バラつき」「数式化」の各定義や使用すべき場面を理解し、目的に沿った手法を適切に選択しながら分析を進めていきたいと思います.

リーダーシップ・キャリアビジョン入門

部下の成長を促す「問いかけ術」

エンパワメントの学び方 エンパワメントに関する学びを通じて、各段階での問いかけや考慮すべきポイントが明確になり、大変勉強になりました。まず、仕事を任せる際には、相手が「できそうか」を見極めるための問いかけが必要です。そして、進行中の仕事がこのまま任せられるか、手助けが必要かを判断するためにも問いかけが重要です。さらに、目標設定における本人の参加を促進するための問いかけも必要です。良い目標設定には、具体性、定量、意義、そして挑戦の要素が必要であることを学びました。 仕事への問いかけをどう活用する? これまで、仕事を任せる際の問いかけは意識していましたが、それ以外についてはあまり意識できていませんでした。今後は、仕事の進行や目標設定におけるモチベーションを高めるために、これらの問いかけを意識的に活用していきます。良い目標設定を行うためには、相手をよく理解した上で、適切な内容を的確に伝える必要があります。これは一人ひとりに対して行うには大変ですが、経験を積んで少しずつ身につけていきたいと考えています。 メンバーの自律性を引き出すには? 具体的な実践として、ジュニアメンバーが新しいプロジェクトに取り組む際、本人がゴールを正しく認識できているか確認し、参加を促すようにしたいです。この問いかけにより、メンバーが自律的に目標達成に向けて行動する姿勢を引き出せると考えています。また、目標設定の際には、具体性や意義などの要素を含めるように会話を通じてサポートします。こうして、メンバーが目標に納得し、無理なく実行に移せるようにします。自分自身の目標設定にも、このアプローチを取り入れ、組織全体が納得できる目標を持てるようにしたいです。 円滑な組織運営を目指して さらに、週次の会議では各メンバーが活動を報告する際、ゴールの正しい認識や自律性を促す問いかけを行います。来年度の組織戦略における目標設定では、メンバーのスキルや経験に基づいた納得感の高い目標設定を追求し、ジュニアメンバーにエンパワメントを行い、本人が計画を策定できるよう支援していく予定です。

クリティカルシンキング入門

グラフと色の魔法:伝わる資料作りの秘訣

グラフを選ぶ際のポイントは? 今週の学習を通じて以下のことを学びました。 まず、グラフ作成においては「他人に伝えること」を念頭に置くことが重要であると学びました。何を伝えたいかによって適切なグラフの種類は変わります。読み手に負担をかけず、一目で理解してもらえるように、自分の伝えたいことと合ったグラフを選択する必要があります。 文字情報以外での伝え方は? また、情報を伝える際には文字だけでなく、フォント、色、アイコンなども意識的に使うことが大切です。これにより、より印象に残る分かりやすいスライドを作成することができます。ただし、アイコンを使用する場合は、それがノイズとならないようメッセージとの整合を確認することが必要です。 資料の冒頭部分はどう工夫する? さらに、スライドに入れるメッセージについては、読んでもらえる工夫、例えば冒頭のアイキャッチやリード文の工夫が必要です。また、この場合にも図表との整合性を取り、協調したい箇所を意識することで、伝えたいメッセージをより明確に伝えることができます。 資料作成で大事なことは? 次に、具体的な資料作成についてですが、以下の点を意識しています。 企画書や提案書の作成では、興味を持って最後まで読んでもらうことが大事です。読みにくい文章になっていないかを確認し、その先が読みたくなるような冒頭のリード文を意識した資料作成を行います。 グラフの使い分けはどうする? 報告書や発表資料の作成では、データによって適切なグラフを使い分け、自分の伝えたいことと合ったグラフを選択することが重要です。 印象に残るスライド作りの秘訣は? 研修資料や業務マニュアルの作成では、伝えようとしているメッセージと書体が与える印象を揃えることが大切です。書体と共に、色についてもメッセージとの整合を意識し、アイコンを効果的に使ってより印象に残る分かりやすいスライド作成を目指します。アイコンを選択する際にも、伝えたいメッセージとの整合に注意します。 これらの点を踏まえ、資料作成を実践していきたいと思います。

クリティカルシンキング入門

今週の学びを振り返って、見えてきた成果と課題とは?

日本語を正しく使うコツは? 今週学んだ内容は「日本語を正しく使う」「文章を評価する」「手順を踏んで書く」の3点であり、これに加えて「ピラミッドストラクチャー」という関連するフレームワークについても学びました。 まず、「日本語を正しく使う」ことに関しては、以下の点を意識しました。主語と述語がつながっているか、隠れた主語がないか、主語が途中で変わっていないか、一文が長すぎないか(60文字程度が適切)を確認しました。 文章評価の視点とは? 次に、「文章を評価する」際には、言いたいことを支える理由がどのような視点で行われているかを考えました。状況や相手によって最適な理由づけが異なるため、複数の理由を考慮した上で、適切なものを選ぶことが重要であると学びました。 手順を踏んで書く秘訣 「手順を踏んで書く」ことについては、全体像を考えつつ骨組みを固めることが大切です。具体的には、「柱を立てる」「柱を支える要素を複数挙げる」「具体化する」「文章にする」というプロセスを踏みます。 ピラミッドストラクチャーの効果とは? ピラミッドストラクチャーについては、メインメッセージ(結論・主張)とキーメッセージ(根拠)で構成され、キーメッセージを深掘りすることです。この構造により、論理の妥当性をチェックしやすくなり、聞き手側が理解しやすい論理展開が可能になります。 例えば、プロジェクトの進捗状況や課題について上司に相談する際には、つらつらと説明するのではなく、結論と根拠を整理することで会話が効率的になり、的確なアドバイスが得られます。 また、ベンダー企業との構想策定や要件定義の場では、主張と根拠を整理することで、理解が促進され、すれ違いを減らし手戻りも少なくなります。 最後に、社内プレゼン用のパワポを作成する際は、ピラミッドストラクチャーを用いて主張と根拠を考慮しながら構成を練ることで、矛盾がなく分かりやすいスライドを作成することができます。 以上の内容を今週学びましたが、これを活用することで、より効果的なコミュニケーションができると感じました。

データ・アナリティクス入門

ギャップに迫る!本質解明の軌跡

計画と実績はどう違う? 年間利益構造の表を見ていると、大きな数字や計画にない項目に目がいきがちですが、計画値と実績値のギャップに注目し、どの項目がどれだけ影響しているのかを把握することが重要だと感じました。 何を見落としている? また、これまで主体的にHowばかりを考えていた自分に気づかされました。さまざまなアイディアが出やすいからこそ、関係者全員が納得するHowを見出すためには、最初に【What】問題の明確化、次に【Where】問題箇所の特定、そして【Why】原因の分析、最後に【How】解決策の立案というステップを確実に踏むことが大切だと理解しました。 理想と現実は何が違う? さらに、業務でKPIを設定する際に、全国平均に頼るだけでなく、「あるべき姿」と「ありたい姿」という二つの視点の違いに気づく機会がありました。現状の分析で「あるべき姿」に留まるだけではなく、自分自身が描く理想の「ありたい姿」まで意識してKPIに反映させたいと強く感じました。 KPI改善は何から? 健康経営やエンゲージメント向上、女性活躍推進、男性育休推進といった分野では、現状分析、KPI設定、課題解決、施策の立案・実行を数値に基づいて進めることが求められます。いずれの場面でも、【What】、【Where】、【Why】の各視点で問題を正確に捉えた上で、【How】の提案を行うことが不可欠と実感しています。 具体的には、健康経営におけるKPIの見直しとして、まず現在設定しているKPIの現状を確認し、数値やグラフでギャップを明らかにしました。次に、相関するKPIの状況を把握し、どの指標が課題となっているかを明確にしました。加えて、多くのKPIの中から、進捗が思うように進んでいないものや他の進捗を阻むものを特定し、専門家の視点を参考にしながら原因を分析しました。その上で、現行のKPIが適切かどうかを再検証し、「あるべき姿」と「ありたい姿」を改めて確認しました。最後に、課題の原因に対して具体的な解決策を検討し、実行可能な施策へと落とし込むプロセスを実践しました。

データ・アナリティクス入門

仮説検証で切り拓く未来

仮説検証はどう進める? 原因についての仮説を立て、その検証のためにデータを集積することは、とても重要なプロセスです。思考の整理には、フレームワークの3C(Client, Competitor, Company)や4P(Product, Price, Place, Promotion)を活用することで、さまざまな視点から情報を捉えやすくなります。また、データの集積方法としては、複数の仮説を構築し、比較するためのデータを収集すること、さらには反論を排除できる情報まで踏み込むことが求められます。 仮説思考って何? 仮説思考には「結論の仮説」と「問題解決の仮説」があり、特に後者はWhat > Where > Why(原因追及) > How(Solution)の順序で検証することで、その精度を高めることができます。これまでは、業務上の課題に対し、2~3の情報のみで仮説検証を行っていたため、フレームワークや仮説プロセスを十分に活用できず、深堀りができていなかったと感じます。 情報の正確さは? 複数の視点から検証を行うことで、偏りのない包括的な情報が得られると同時に、正確なデータと信頼性の高い情報源へのアクセスの重要性を改めて認識しました。不正確な情報による誤解を避けるためにも、情報の正確さは不可欠です。 過去の教訓は何? 過去の業務を振り返ると、複数のデータベースを活用していたため、データ統合の正確さや集積時点の一貫性が取れていなかったことを反省するとともに、自分のデータ分析に対する知識不足を痛感しました。今後は、正しい仮説を立てることで説得力を持たせ、より正しいアクションへと結びつけていきたいと考えています。 実践で学ぶ仮説は? また、日常のさまざまなシチュエーションにおいても仮説検証を実践し、Week4で習得した知識を無料研修などの実践の場で活用していくつもりです。問題解決の仮説プロセス(What > Where > Why > How)を業務に取り入れることで、仕事の分析や効率、精度の向上につなげていきたいと思います。

クリティカルシンキング入門

思考を広げる3つの視点チャレンジ

具体的表現を目指す重要性とは? ビジネスで目指したいことは、「具体的かつ易しく、わかりやすい文章で語ること」との冒頭の話を聞き、自分がしばしば「抽象的」かつ「キーワード」で説明しがちであると改めて感じました。印象的だった学びは三つです。 まず、①「三つの視」です。これが非常にわかりやすく、「あえて違う自分」を意識することが、多角的な視点で新たなアイディアを生み出す基本的な考え方だと思いました。視点、視野、視座を意識することで、制限を超えた考えを持つことができます。 ロジックツリーをどう活用する? 次に、②ロジックツリーです。思考の偏りを防ぐための便利なツールとして、仕事以外でも様々な状況で使えると思います。ロジックツリーを構築する際にカテゴリー別に整理する作業が思う以上に楽しめました。今後も上手に活用していきたいです。 具体と抽象のキャッチボールを習得するには? 最後に、③具体と抽象のキャッチボールです。この考え方がまだ習慣になっていない中で、次につなげる思考法がわかりやすく提供されました。②と連動するので、これを意識的に取り入れていきたいです。 グループワークを通じて、自分の思考の偏りが理解でき、他者の意見を聞くことで視野が広がりました。アウトプットの重要性を改めて実感しました。 実践的なアプローチとは? 具体的に実践したいことが二つあります。 1. 意思決定時には、多くの関係者に納得してもらえるために「自分への批判的思考」を意識し、三つの視、とりわけ「視野」と「視座」を意識します。これにより、他者にも納得のいく説明が可能になると考えています。 2. スタッフ育成においては、自分の経験だけで指示するのではなく、相手の思考を意識しながら業務を進め、ZOOMなどを活用してスタッフの学びにつなげていきたいと考えます。異なる考え方を意識してスタッフの話を聞き、相手の視点で考えることで、目標達成へと導いていきたいです。 最後に、意思決定時には、頭の中だけで考えるのではなく、一旦書き出して言語化することを心がけます。

リーダーシップ・キャリアビジョン入門

振り返りで見つける自分の道

過干渉を避けるには? まず、実行段階においては、過干渉にならないことが重要です。想定した結果や成果物がしっかりとできているかを確認し、個人を責めたり犯人探しをするのではなく、構造的な問題を把握するために振り返りを行います。忙しいという理由で振り返りを省略するのはもったいなく、うまくいった点についても「なぜうまくいったのか」を検証することが大切です。 なぜ動機は異なる? また、個々人のモチベーションは異なります。マズローの欲求5段階説や、ある理論、さらに衛生理論など、さまざまな理論を踏まえながら動機付けについて考えることができます。ただし、どの理論にも完全に当てはまるわけではない点に注意しなければなりません。 どうして信頼を築く? 日常の業務の中では、尊重、目標設定、フィードバック、そして信頼関係の構築が欠かせません。たとえば、チャットで「質問よろしいでしょうか?」といった連絡があった場合、まずは「連絡ありがとう」や「質問ありがとう」と返すことで、相手への尊重と信頼関係の構築が実践できると感じています。 どうやって動機把握? また、進捗や成果が思わしくないメンバーについては、それぞれの動機付けの要因を考え、日頃からのコミュニケーションを大切にする必要があります。一方、優秀で自立しているメンバーであっても、モチベーションを見極め、課題がないかやさらなる成長のための視点でコミュニケーションを密に取ることが求められます。 どうして振り返り習慣? こうした取り組みを効果的に進めるため、まずは自分自身の中で、週単位、月単位、あるいはプロジェクト単位での振り返りを習慣化することが望まれます。さらに、週に一度、数十分程度でもフィードバックや振り返りの場を設けることで、目標修正の必要性を確認し、尊重や信頼の構築に繋げることができると考えています。その際、何がうまくいき、何がうまくいかなかったのか、またその理由について、メンバー自身の言葉で考える機会を設け、傾聴の姿勢をもって意見を引き出すことが重要です。

データ・アナリティクス入門

学びの武器:ロジックツリーとMECE活用法

ロジックツリーとMECEの理解を深める 今回の学びで【ロジックツリー】と【MECE】についてしっかり理解することができました。これまで漠然と理解していたものの、具体的な分析には活用していなかったため、今後の分析に役立てたいと思います。ただし、【感度の良い切り口】を選ぶことが実践では難しいと感じており、特訓が必要だと考えています。今後は、これまでの成功と失敗の分析例を見比べ、感度の良い切り口を探っていきたいと思います。 分析力を向上させるための反省点 私は構造的に物事を分解して考えることが苦手で、【ロジックツリー】や【言語化】によって頭の中で考えていたことを正確に表現できていませんでした。その結果、要因分析の精度が不足していたと反省しています。この学びを経て、より効果的な分析ができるよう努める所存です。もともと時間がかかることもありますが、繰り返し実践し、自分のものにしていきたいです。 実践によるスキルの習得 早速、【ロジックツリー】や【MECE】を日々のデータ分析業務に取り入れ、課題解決に役立てたいと思います。これまでなんとなく分析しており、【what】【where】【why】【how】を頭の中で考えながらも【可視化】や【言語化】していないことが原因で、正確性に欠けていました。恐らく、【感度の良い切り口】が間違っていた可能性もあると反省しています。今後は学んだことを実践に取り入れ、分析の精度を高めていきます。 日々の実践がスキルアップの鍵? 日々の分析で【ロジックツリー】、【MECE】、【感度の良い切り口】を身に付けるためには、繰り返しの実践が大切です。そのために、同僚が利用している【ミニホワイトボード】を購入し、何度も書き出していくつかの切り口を見極めていこうと思います。確定したら、エクセルに【背景】【目的】【仮説】【ロジックツリー】【5W1H】をまとめ、事前に整理した資料をもとに適切なデータを見極めていきます。自分なりの考察をまとめた後は、依頼者と振り返り議論を通じて、より正確な要因分析が行えるよう努めます。

アカウンティング入門

無借金経営の光と影を探る

B/Sから見える経営の違いは? B/Sから、資金の調達方法や運用方法によりビジネスモデルの違いが浮き彫りになることを学びました。例えば、無借金経営の場合、借入金や利息の支払いがないため一定の安心感はあるものの、十分な利益が上がらないと資金繰りが悪化し、次の成長戦略への投資が制限されるリスクがあると理解しました。(具体例として、広告宣伝費やメニュー開発費などが挙げられます。) 営業サイクルはどう理解? また、営業サイクルについては、「仕入→製造→在庫→販売→回収」という一連の流れを再認識し、企業経営における基礎としての重要性を感じました。さらに、業種によって流動資産と固定資産の比率が異なるなど、企業ごとのビジネスモデルに基づく資産の配分の違いも理解できました。 B/Sの違いをどう捉える? 総評として、B/Sを通じた資金調達と運用の違いの理解は非常に有益であり、無借金経営のメリットとデメリットを考慮する視点が印象的でした。また、異なる業種間でのB/Sの違いを具体的に考えることで、ビジネスモデルへの理解が一層深まったと感じています。 無借金経営のリスクは? 今後は、無借金経営における成長戦略の制約をどのようにリスク緩和していくか、また、流動資産と固定資産の割合がビジネスにどのような影響を与えているかについて、さらに詳細な分析を進めたいと考えています。 新規事業計画をどう策定? 新規事業戦略においては、コストや利益構造、資金調達方法について仮説を立て、しっかりとした事業計画を策定することが重要です。どこに資金を投入し、どこで費用を抑えるべきかを明確にし、場合によっては事業構造の見直しや撤退も検討する必要があります。 収益性向上の対策は? まずは現状の把握を行い、その上でコストや利益構造の見直しを実施し、収益性の高いビジネスモデルの構築を目指します。具体的には、ステークホルダーとの業務分担や売上分配率の調整、社内のマンパワーと外注費のバランス、さらにはスキームや手数料の見直しを、今期中に実行する計画です。

データ・アナリティクス入門

数字とグラフで見える成長

比較や仮説の意義に迫る? 本教材では、比較や仮説思考の重要性を改めて確認しました。大量のデータを扱う際、数字化しグラフなどで可視化することで、情報がより明確に把握できることが示されています。 代表値はどう選ぶ? 代表値として、単純平均、荷重平均、幾何平均、そして中央値が挙げられました。それぞれ、状況に応じた使い分けが必要です。たとえば、ばらつきが大きい場合や外れ値がある場合には中央値が適している一方、成長率などの変化割合を捉えるためには幾何平均が有効です。 標準偏差を理解する? また、データのばらつきを理解するためには、標準偏差が重要な指標となります。標準偏差は、平均値との差の二乗和の平均の平方根として計算され、数値が小さいと密集、大きいとばらつきがあることがわかります。正規分布の場合、平均値から標準偏差の2倍以内に約95%のデータが収まるという2SDルールも、実感としての起こりにくさの目安となります。 グラフの効果は何? まとめとして、代表値とばらつきを用いてデータの特性を把握し、グラフなどの可視化を利用すると、非常にわかりやすく情報を整理できることが強調されていました。具体例を用いた説明は非常に効果的で、内容が実践的に応用できる点も評価されます。 荷重平均の活用は? さらに、データ可視化の具体的な利点や、実際の場面で荷重平均をどのように活用するかについて、さらに考えを深める問いが提示されています。これにより、自らの分析手法を実践的に応用する視点が求められています。 実務でどう活かす? 最後に、実務への応用例として、メンバーの時間外労働の管理が取り上げられました。労働時間が所定の範囲内に収まるよう、グラフを用いて傾向を把握する方法や、外れ値がある場合に特定の商品のデータを除外して全体の傾向を見る手法が紹介されました。また、エクセルを活用して各メンバーの代表値やばらつきを算出し、分析の特性に応じた手法が使われているかを確認することで、より実践的なデータ分析支援に繋げる取り組みが示唆されています。

女性に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right