クリティカルシンキング入門

イシュー特定で成果を最大化!

イシューの意義は? クリティカルシンキングを通じて最も得られた学びは、「イシューを明確にすることの重要性」です。解決策を決定する際にイシューが不明確なままだと、結果的に意味のある成果が得られない可能性が高いと感じました。答えにたどり着くためには、ピラミッドストラクチャーやデータ分析といったスキルを駆使することが効果的であることを学びました。 スキルはどう活かす? これらのスキルは、例えば講演会の企画や医師に対するプロモーション活動計画の作成、チームでの会議、社内メールの作成、上司への活動報告など、さまざまな場面で活用できます。重要なのは、まずイシューを特定してから活動内容を決定することであり、この点を自分自身だけでなく周囲にも意識させていきたいと思っています。 データの切り口は? 業務において、まずは関連データの分析に取り組むことが必要です。データをただ見るのではなく、異なる切り口で分解し、数字から見える問題を明確にします。その上でイシューを特定し、活動内容を決めることが肝心です。さらに、なぜそのような内容になったのか、その背景についても説明を欠かさないように心がけたいと思います。

マーケティング入門

ニーズ発見から始める市場攻略の一歩

商品開発の重要性は? 利用者のニーズに合わせた商品開発と進め方の重要性に気づかされました。BtoBとBtoCの違いはありますが、結局商品はお客様あってのものです。進め方については別途考える必要があるかもしれませんが、重要なのは気づいた点を深掘りして考えていくことです。 業界現状をどう把握? 私たちの業界はニッチで、製品の多くが海外の本社で製造されています。日本市場に適したアプローチを行い、国内の顧客が求めているものを正確に把握する必要があります。既にさまざまな取り組みを行っており、その結果として業績が向上しています。しかし、競合よりも一歩先を行くためには、日本の顧客が本当に必要としている物を見極め、本社との調整も重要となります。 本社調整はどうすべき? 本社を巻き込んで調整するのは大変そうですが、まずは小さな一歩から社内の関係者を巻き込んでいきたいです。顧客は皆それぞれ異なり、何が必要かをしっかり検討する必要があります。また、自社製品のハードウェアからソフトウェアへの売り上げにつながるようなお客様がいるのかを考え、その方々が何を望んでいるのかを社内で議論しながら進めていければと思います。

データ・アナリティクス入門

問題を正しく捉える力を鍛える学び

問題特定の重要性とは? 問題を特定し、何が問題なのかを正しく把握することが重要です。問題を正しく捉えることで、その問題を構成する要素を分解し、それぞれ丁寧に実施することの重要性を理解しました。この基礎を常に意識し、自然にこの作業ができるように習慣化したいと感じました。 BPR業務で本質的課題を解決するには? BPR業務推進において解決しようとしている課題についても、本質的な問題を改めて可視化し、問題を正しく捉えるための作業ステップを築くことが必要です。本質的な問題を捉える作業を丁寧に行うことを習慣化することで、現在は目の前にある課題を解決する過程で本質的な問題にたどり着くことが多いですが、目の前の課題について問題が何かを確認する作業ステップを加えることを考えています。 ロジックツリーとMECEで思考を整理する ロジックツリーを作成し、MECEを意識して確認作業を行うステップを加えていきます。まずは苦手意識のあるロジックツリー作りにトライし、回数を重ねてその質を上げたいと思います。過去に解決済みの課題についてもロジックツリー化してみることで、自分の思考の癖も確認していきたいと考えています。

クリティカルシンキング入門

思考の前提を見直し、課題解決力を強化

前提と過程を考える? 今まで、結論を出すことばかりに注力し、物事の前提や順序を立てて考えることを疎かにしていたことに気づきました。今後は、前提やプロセスの重要性を意識し、ビジネスだけでなく日常生活においても、その場しのぎの考え方を改め、しっかりと順序立てて考えることを心がけていきたいと思います。 解決策をどう見出す? クライアントの問題解決においては、目の前にある問題や思いつきの問題を取り上げてしまう傾向がありました。しかし、問題の前提を見極め、どのような解決策があるのか、改善後の状態はどうあるべきかを順序立てて考え、まとめ、結論を出すことが大切です。このプロセスが十分にできていなかったと反省しています。今後は、業務改善支援における問題の整理に反映していきます。 最適な施策は何? まずは、問題の前提を整理し、その前提ごとにどのような施策が考えられるかを順序立てて検討していくことから始めたいと思います。ただ「どうなったらよいか」だけに目を向けるのではなく、現在何が問題で何が不足しているのかを併せて考えていくことに注力します。前提や問題の洗い出しを丁寧に行うことから始めたいと思っています。

クリティカルシンキング入門

社員の声から見えてきた課題発見のヒント

分解の切り口をどう選ぶ? 分解する時は、まず全体を定義することから始めるべきです。分解の切り口を考える際には、時間・人・手段などの上位にある概念を意識することがポイントです。一つの切り口だけで断定せず、別の切り口でも分解してみると、新たな事実が見えてくることがあります。いくつかの切り口で分解してみることが大切です。また、ある事象にいたるプロセスで分けることで、どこに問題があるのかが見えてくることもあります。 サーベイ分析における新たな視点 従業員サーベイを分析する際、かつてはチームごとに分けていましたが、在籍年数やグレード別など、複数の切り口で分解してみることにしました。たとえば、部門間のコミュニケーションがうまくいっていない場合、具体的な事例を取り上げて、そのコミュニケーションのプロセスを分解し、課題を見つけることが有効です。 1on1後の課題洗い出しは? 現在、全社員との1on1を終え、課題の洗い出しをするタイミングにあります。そこで、まずは多く出てきた事象をプロセスに分けて書き出し、どの段階でズレが生じたり、問題のきっかけが発生しているのかを見つける作業を行いたいと考えています。

戦略思考入門

戦略で切り拓く挑戦の道

戦略と戦術の違いは? 戦略とは、目的達成のための方向性を定めるものであり、戦術はその戦略を実行する具体的な手段や行動計画です。戦略的思考とは、目標を明確に設定し、最短・最速で到達するために必要な行動を取捨選択して最適な道のりを描く方法です。どの道を進むにしても障害は存在するため、それらを乗り越えるためには独自性が重要です。リソースが限られている中で、やるべきことと不要なことを明確に分けることで、最小限のリソースで目標に達することが可能となります。 中期戦略の見直しは? 事業中期戦略策定の業務においては、以下の三点に具体的に取り組んでいます。まず、事業課題の抽出とゴール設定について、現状のゴールが単なる方向性にとどまっているため、より具体的な目標に落とし込む必要があります。次に、実施すべきこととそうでないことを取捨選択しているものの、不要な活動をやめる理由が十分に説明されていないため、メンバーの納得が得られていないと感じています。ここは戦略的思考に立ち返り、再検討する必要があります。最後に、重要な要素である独自性についても、自社事業における整理が不十分であるため、再度見直すことが求められます。

戦略思考入門

多様な視点を武器に!意見を活かす力

多角的視点で何を捉える? 本質を見失わず、多角的な視点で広い視野から分析することの重要性を実感しています。フレームワークのような戦術は、知識として知っただけで満足せず、実際に活用して初めて効果的な武器になると考えています。また、自分の意見に固執するのではなく、多くの人の意見を取り入れることを意識したいと思います。 悩みはどう生じる? 働く中で、自分一人で悩みがちで、他者が理解してくれないと感じることがあります。これにより、悩みを抱え込み、人に打ち明けずフィードバックを受け入れられないという悪循環に陥っていました。しかし、学習を通じてフィードバックを得ないことが最も危険であると実感しました。納得できない意見に直面したとしても、他の人の意見を聞くことをあきらめないで、多様な視点を得るようにしたいです。 意見共有はどう進む? 企画や戦略を立てる際には、自分だけで完璧を目指すのではなく、早い段階でチームメンバーから意見をもらうことを心がけます。そして、その意見をもとに内容をさらに高めていき、上司の意見を取り入れる過程を習慣化したいです。このようにして、より良い成果を生み出すことを目指します。

データ・アナリティクス入門

仮説思考を活用したデジタル化挑戦記

仮説思考の基本は? 仮説思考は、ビジネスのスピードと精度を向上させ、説得力を伴った意思決定を行うために重要です。このプロセスを実践するには、まず複数の仮説を立て、網羅性を持たせることが必要です。仮説を立てる際の重要なツールとして、フレームワークを活用することが推奨されます。仮説には、結論の仮説と問題解決の仮説があり、特に問題解決の仮説では、what、where、why、howの順に考えることが基本です。 デジタル化の進め方は? 私の仕事の一環として、保険手続きを紙からデジタルへと移行させる方法を模索していますが、現状では多くの既存データが十分に活用されていないと感じています。そのため、仮説思考を取り入れながら、デジタル化率を向上させるための施策を複数考えたいと思います。 実行策の視点は? まず、手続きの種類ごとにデジタル化率を向上させる余地があるか、既存データを基に複数の網羅的な仮説を立てます(where)。次に、デジタル化が進んでいない理由を明らかにするため、幾つかの原因を挙げます(why)。そして、実現可能性やコストを考慮しながら、具体的な実行策を練ります(how)。

データ・アナリティクス入門

営業成績アップのカギは仮説立てにあり!

仮説を立てる重要性とは? 原因を見つけるためには、仮説を立ててデータを収集することが重要だとWeek4で学びました。仮説は一つに絞らず、複数立ててから絞り込むことが大切であり、仮説同士に網羅性を持たせる必要がある点に納得しました。しかし、網羅性や複数の仮説を考え過ぎると時間がかかるため、バランスを考えることが重要です。 営業成績向上の仮説は? 例えば、自分の営業成績が悪いときに成績を上げることを目的とした場合、様々なポイントで仮説を立てられます。行動数が足りない、提案の質が悪い、ニーズが大きいクライアントに当たっていないなど、様々な仮説が考えられます。網羅性の確認には他のフレームワークを活用することが有効です。 データと仮説の精度を高める方法 具体的には、まず仮説を立てるために自分の営業プロセスを分解し、その過程でフレームワークを調べたり、上長とディスカッションを行ったりして網羅性を高めます。また、過去の営業成績からデータを抽出し、仮説の精度を上げるための材料にします。もし不可欠なデータが不足している場合は、将来的にはデータの取得が可能となるように社内で提案することも考えられます。

データ・アナリティクス入門

数字で見つける仮説と検証の旅

データ検証の重要性は? 総合的な演習を通じて、データをもとに仮説を立て、その後検証する一連のループを体験できました。単に数字を見るだけでなく、What、Where、Why、Howといった視点を意識してストーリーを組み立てる重要性を実感しました。 A/Bテストのポイントは? また、A/Bテストにおいては、比較対象以外のすべての条件をそろえることが非常に重要であると学びました。この考え方は、売上が変化した原因や理由を、経験則ではなくデータに基づいて示す際に大変役立つと感じました。 仮説検証の飛躍は? さらに、仮説から検証への流れを飛ばして結論に至ってしまう傾向があるため、他の可能性や選択肢がないかどうかも十分に検討する必要があると気づかされました。同時に、キャンペーンや広告の有効度を測る際には、測定したい内容以外の条件を同一にすることの徹底が求められるという点も大切だと感じました。 論理構築はどう? 最後に、分析やストーリー作成においては、What、Where、Why、Howを明確にすることで、より論理的で理解しやすい内容にまとめることが可能になると学びました。

データ・アナリティクス入門

データが効く!新たな分析視点を実践

代表値はどう役立つ? 今まで、分析に代表値をほとんど使ったことがなかったと反省しました。業務で特に活用できそうだと思ったのは、加重平均と中央値です。 加重平均でどう評価? まず、加重平均を販売施策の効果分析に利用しようと思います。施策ごとに異なる予算をかけているため、予算に応じて効果を加重平均で評価します。これにより、施策の効率性を測り来年度の販売施策立案に活かせます。具体的には、販売施策の実績を「かかった費用」「成約金額合計」「販売台数」「粗利益額」「費用対効果」などの項目でまとめておきます。そして、年度内に加重平均で評価し、費用対効果の良かった施策とその要因を明らかにします。 中央値はどう活かす? 次に、中央値をSNSマーケティングの効果測定に役立てます。たとえば、Instagramにおける直近一年のインプレッション、リアクション、アクティビティをまとめ、中央値を算出します。これにより、通常の反応水準を把握し、外れ値に該当する投稿を見つけて分析し、今後の投稿戦略に活用します。具体的には、外れ値を見つけ、増やしていくべき投稿内容や逆に今後は減らしていくべき投稿の傾向を把握します。

データ・アナリティクス入門

平均値の罠に気づいてデータを活用する方法

平均値の危うさを再認識 今回の学習で、平均値の危うさを改めて知りました。例題を通じて、グラフにすると簡単に理解できる数値もあれば、解釈が難しい数値もあると感じました。代表値と散らばりをうまく活用して、仕事に活かしたいと思います。 正規分布と2SDルールに興味 これまでも様々なグラフを見たことはありましたが、平均値の名称と内容について初めて深く理解できました。特に、正規分布と2SDルールはとても興味深かったです。 標準偏差の応用は可能? 標準偏差の数値でデータの散らばりを明確にすることも応用できそうです。弊社オウンドメディアにおけるコラムのオーガニック流入の記事ごとの順位を、分布グラフを用いて検証してみたいと思いました。それにより、カテゴリーを大分類し、リライトの優先順位を決めるなどの応用が期待できます。 新たな発見を期待して まずは、今回学んだ内容をしっかり復習し、これまで手をつけていなかった集計にも活用してみます。そうすることで、新たな発見や課題が生まれることを期待しています。さらに、TOP10の記事のキーワードリサーチにも、この解析手法を試してみたいと思います。

女性に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right