データ・アナリティクス入門

3C×4Pで描く未来予想図

3C分析の魅力は? 仮説を考えるためのフレームワークについて学ぶ中で、まず3Cの分析が印象に残りました。事業を取り巻く環境を整理するために、顧客(市場)、競合、自社という観点から現状を捉えることが重要であると感じました。これにより、市場の拡大可能性や自社サービスの強み、顧客のニーズの充足度が明確になります。 4P戦略の効果は? 次に、4Pのフレームワークも非常に有益でした。製品やサービスの質、適正な価格設定、提供場所、販売促進の各要素が、顧客に対する訴求力を高める鍵となることを再確認しました。これらの要素をバランスよく整えることで、より効果的な経営戦略が実現できると実感しました。 仮説の意味は? さらに、仮説を持つことで、単なる問題解決に留まらず、未来への問題意識や事業への関心を持ち続けることができるという点も大きな収穫です。結論においても、現状の運用体制の変化に対してどのようなアプローチが必要か、将来的な成長の可能性について仮説を立て、それを日々の業務で検証していく姿勢が重要だと考えています。

データ・アナリティクス入門

数字が語る学びの秘密

データ比較の基本は? 他のデータと比較することが、意味を見出すうえで重要だと理解していましたが、件数が多いデータ同士の比較では、代表値を用いる必要があることや、データの分布状況を考慮する必要がある点まで深く意識したことはありませんでした。今回の学習で、データをビジュアル化して各々の特性を目で確認することで、仮説が立てやすくなる一連の流れが理解でき、非常に勉強になりました。 数値の習得方法は? ただ、加重平均や幾何平均、中央値、標準偏差といった細かな数値の算出については、繰り返し実践しながら学んでいかないと身につかないと感じました。そのため、何度も反復して練習する必要性を痛感しました。 資料作成にどう活かす? 今後、資料作成の際に付録データを掲載する場合は、今回学んだデータのビジュアル化を活かし、読み手に伝わるようなデータ表現を工夫してみたいと思います。また、データ分析の際には、どのような状況でどの代表値が適切かを踏まえ、代表値と散らばりを考慮して数字を集約していくことを意識したいと考えています。

データ・アナリティクス入門

データが紡ぐ学びの物語

データはどのように? データは、数字、視覚、そして数式という三つの観点から捉えることができます。まずは平均値を確認し、その値を基に仮説を立てます。その上で、実際のデータのばらつきを評価し、平均値だけでは把握しきれない場合には標準偏差を活用します。標準偏差が小さいとデータのばらつきは少なく、大きい場合はばらつきが大きいことを示しています。 視覚情報は活かせる? また、データの種類に応じて適切なグラフを選び、視覚的に理解しやすいようにすることが重要です。与えられたデータやそこから計算された数値だけでは十分な情報を得られないこともあるため、データを客観的に評価し、集約しすぎていないかどうかやばらつきの状況を分解して考慮する必要があると感じました。 偏りをどう防ぐ? さらに、単に平均値を求めるだけでなく、標準偏差や中央値などの他の指標も用いることで、、より偏りの少ない分析が可能となります。状況に応じて平均、最大値、最小値以外の指標も活用し、迅速に必要な情報を把握できるようにすることが求められます。

データ・アナリティクス入門

振り返りが照らす学びの道

目的と手段の違いは? 分析に取り組む際、まず「要素の分類化」や「比較」という視点を確認しました。分析はあくまで手段であり、目的ではないという点が印象に残ります。これにより、仮説を元に進める中で、途中から「差分探し」が目的化してしまわないよう注意する必要性を感じました。 レポート設定の意義は? また、定期的な分析レポートを実施する際には、改めてその目的を明確に設定することが大切だと再認識しました。業務の中で、分析自体が目的とならず、真に必要な意味を見出すために、常に差分に敏感になり、その差分がどのような意味を持つのかを意識する習慣を身につけることが求められます。 PDCAはどう実践する? さらに、すべての分析には仮説を立て、得られた結果に基づいて施策のPDCAサイクルを実行することが基本です。報告時には、ただ結果を示すだけでなく、分析の目的や背景を相手に伝える工夫が必要です。分析を終えた後は、やりっぱなしにせず、必ず振り返りの時間を設け、次のアクションにつなげることが今後の改善に寄与するでしょう。

データ・アナリティクス入門

原因探求から始まる成功への道

どうして原因分析をする? 問題解決のステップであるWhat、Where、Why、Howの流れが非常に印象に残りました。特に、どうしてもHowの部分に注目しがちですが、その前の段階で問題を明確にし、原因をしっかりと特定して分析する過程こそが、本質的な解決につながると感じました。 なぜ退会が増える? また、コミュニティ運営において退会者の増加という現象を分析する際にも、このステップが有効であると考えました。「なぜ退会が起こるのか」という問いに対し、まずは原因の仮説を立て、問題を具体的に洗い出すことが大切だと思います。 なぜ数値化で解決? そのため、現状、退会時に取得しているアンケート結果を活用することが有用だと感じます。アンケートの内容を分析し、所属期間中に行われたイベントなどの傾向と照らし合わせることで、理想的な状態とのギャップが明確になるのではないでしょうか。ギャップを数値として示すための具体的な指標についてはまだ模索中ですが、数値化が進めば対策の策定もより容易になると感じました。

データ・アナリティクス入門

問いから始まるデータ探求

仮説はどう作成? データ分析において、まず仮説(問い)をどのように作成するかが重要であると再認識しました。解説で提示された「地元のネットワークを構築できなかったから」という視点は、私にとって新たな発見でした。また、仮説自体の数が少なかったことから、問いを思いつくためのトレーニングが必要だと感じました。 中央値の適用は? 代表値、特に中央値の用い方についても多くを学びました。アンケート分析などにおいて、平均値が低いという理由だけで意図的に中央値を用いるのは適切ではないという指摘は、慎重な判断が求められると実感させられました。 平均値は信用できる? 報道などで目にする数字の平均値だけに頼るのではなく、しっかりと問いを立て、調査することの大切さを改めて考えさせられました。 最適なグラフは? また、伝えたい内容や主張に合わせて最適なグラフを選定する方法を検討し、Excelなどで実際に作成してみることが有効だと感じました。問いを立て、その根拠となるデータを調べ考察する訓練の重要性も実感しました。

データ・アナリティクス入門

仮説を実践!A/Bテスト現場記

目的は明確ですか? まず、A/Bテストを行う際は、目的と仮説を明確にすることが大切です。検証項目をしっかりと設定した上で、テスト対象を1つの要素に絞り、無駄な混乱を避けます。 期間は統一ですか? また、A/Bテストは必ず同じ期間内で同時に実施する必要があります。異なる期間で行ってしまうと、テスト以外の環境要因が影響し、正確な検証が困難になるためです。 仮説の幅広げる工夫は? キャンペーンメールの場合も、基本として要素を一つに絞り、同一期間での同時実施を心がけています。しかし、仮説を明確にするのが難しく、有意差が出にくい状況もあるため、フレームワークを活用して仮説の幅を広げる工夫を行っています。 最適仮説は何ですか? その上で、自分が実施したいキャンペーンにおいては、コンバージョン獲得のため検証すべき仮説を、フレームワークを用いて整理し書き出します。そして、どの仮説が最も効果的なのかを考慮しながらキャンペーンを実行し、結果をもとに検証と改善のサイクルを繰り返すことで成果を追求しています。

データ・アナリティクス入門

再発見!学びの原点と未来

理解の進みはどう? これまで毎週の課題をこなす中で、内容の理解が進んでいると感じていました。しかし、最終講義の際に、一部消化しきれていない点や全体の流れの理解が十分でないことに気付きました。そのため、分析のテクニックに入る前に、基本的な考え方や全体の流れを再確認したいと考えています。 戦略と課題はどう? また、新サービスの展開にあたっては、現状を踏まえた上で、今後の利用促進に向けた提案を実現するための分析が可能であると感じています。一方、社内の購買データの分析については、解決すべき課題が残っているとの相談も受けています。このため、購買データの分析に取り組む前に、目的を明確にし仮説を立て、具体的な取り組みを進めていく必要を認識しています。 具体策はどうする? 具体的には、新サービスについては目的を再確認し、必要なデータの見直しを行います。また、購買データの分析に関しては、事前に解決しなければならない課題に対し、目的の明確化とそのための提案を進めることで、効果的な分析に結び付けたいと考えています。

データ・アナリティクス入門

平均に惑わされない分析術

平均値では捉えきれない? データ分析の学びを通じて、平均値だけでは捉えきれない情報があることや、平均値そのものにもさまざまな種類が存在するという新たな視点を得ました。また、データの散らばりを正しく理解する必要性や、単調な棒グラフや円グラフ以外のビジュアル化手法にもそれぞれのメリットがある点を、具体的に理解することができました。 どの指標を選ぶ? これまでの分析では平均値に頼りがちでしたが、目的に応じて加重平均や幾何平均、あるいは中央値といった他の指標も活用すべきだと強く感じました。今後は、分析の目的に沿って適切な手法を使い分け、より的確なデータ解析を目指していきたいと思います。 SNS分析で何が見える? さらに、SNS系のコンテンツについては、年齢層や性別ごとのリアクションの違い、これまでのフォロワー増加率から今後の成長をどのように予測できるのかといった点について、より詳細な分析が求められると実感しました。今後は、こうした視点も取り入れて、より充実したデータ分析に努めていきたいと考えています。

データ・アナリティクス入門

ロジックツリーで問題解決の新視点を発見

ロジックツリーはなぜ必要? ロジックツリーの作り方について、層別分解と変数分解の二つの手法があることを学びました。それぞれの方法は、分析したいデータに応じて使い分けることが重要だと考えます。一般的には、MECEの概念に基づいて、漏れなく重複なくと考えがちですが、実際には問題特定や新たな発見を目的として、意味のある分類ができるように、様々な視点を持つことが重要だと感じました。 層別分解の効果は? あるプロジェクトでは、問題を特定する必要があるため、ロジックツリーを用いた層別分解によって、MECEを念頭に置きながら、どのような層別にするかを考え、問題特定や意味ある分類を目指したいと思います。 ギャップ埋めはどうする? まず、理想的な状態と現状の間にあるギャップを洗い出し、ロジックツリーの層別分解に当てはめることで、多角的な視点から分析を行いたいと考えています。そして、さまざまな層別で詳細に分解し、問題箇所を特定し、そのギャップをどのように埋めていくかについての提案を資料としてまとめたいと思います。

データ・アナリティクス入門

効率的な資料作成で業務改善!

分析を効果的にする方法は? 分析の本質は比較にあります。具体的な要素を整理し、比較対象や基準を設けて、きちんと比較することが重要です。また、条件がそろっていない場合には想像力を働かせて補完することも必要です。 資料作成の時間短縮には? 目的を理解して分析を行うことが大切です。販売計画の部署にいる後輩たちに対して、分析の基本を踏まえたアドバイスをします。例えば、資料にグラフをたくさん載せて資料作成に時間がかかると嘆いている後輩の資料をチェックし、本来の目的は何か、仮説は何かを一つ一つ確認していくことです。 カイゼンプロジェクトの課題解決策 現在進行中のカイゼンプロジェクトでは、「資料作成に時間がかかりすぎている」「この資料作成は本当に必要か」といった課題があります。これらの問題を解決する方法の一つとして、目的をしっかり確認し、仮説を明確にしてから資料を作成するというアプローチを取り入れることが有効です。目的を明確にした上で、仮説を立て、必要な資料を作成する重要性を後輩たちに伝えることが必要です。

データ・アナリティクス入門

問題解決のアプローチで明確なビジョンを構築

問題解決のアプローチを学ぶ 問題解決には、「現状→あるべき姿」と「現状→ありたい姿」の二つのアプローチがあることを学びました。自分の業務に照らし合わせると、現状では大学の退学率が○○%であるのに対し、ありたい姿は退学率を0%にすることです。現状とありたい姿を明確に認識することで、分析時のブレを防ぐことができると思います。 イベントでロジックツリーをどう使う? 大学でイベントを行う機会が多くありますが、その際にロジックツリーを使用し、来場者プレゼントやイベント内容を決定するのに活用できそうです。また、このプロセスをチーム内で共有することで、決定の場面で話がスムーズに進むと感じました。 分析の透明性をどう確保する? 誰かに説明する際には、分析のフレームワークを共有し、「こういった分析を行い、こう決定した」という考えの過程を透明にすることが重要です。さらに、何か分析を行う際には、闇雲に考えずに、まず分析のフレームワーク(ロジックツリーやMECE)が活用できないかを検討することを心がけたいと思います。

「データ・アナリティクス入門」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right